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ABSTRACT

Pattern-recognition-based arm prostheses rely on recognizing mus-
cle activation to trigger movements. The effectiveness of this ap-
proach depends not only on the performance of the machine learner
but also on the user’s understanding of its recognition capabilities,
allowing them to adapt and work around recognition failures. We
investigate how different model training strategies to select gesture
classes and record respective muscle contractions impact model
accuracy and user comprehension. We report on a lab experiment
where participants performed hand gestures to train a classifier
under three conditions: (1) the system cues gesture classes ran-
domly (control), (2) the user selects gesture classes (teacher-led),
(3) the system queries gesture classes based on their separability
(learner-led). After training, we compare the models’ accuracy and
test participants’ predictive understanding of the prosthesis’ behav-
ior. We found that teacher-led and learner-led strategies yield faster
and greater performance increases, respectively. Combining two
evaluation methods, we found that participants developed a more
accurate mental model when the system queried the least separable
gesture class (learner-led). Our results conclude that, in the context
of machine learning-based myoelectric prosthesis control, guiding
the user to focus on class separability during training can improve
recognition performances and support users’ mental models about
the system’s behavior. We discuss our results in light of several
research fields : myoelectric prosthesis control, motor learning,
human-robot interaction, and interactive machine teaching.
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1 INTRODUCTION

Learning to control a myoelectric prosthesis is challenging and influ-
enced by physiological differences, thus requiring tailored training
for users. These prostheses capture users’ intentions by mapping
electromyographic (EMG) signals from muscular activations to cat-
egories associated with prosthesis output gestures. Myoelectric
prostheses can use supervised machine learning (ML) algorithms
to learn associations between EMG signal patterns and prosthesis
gestures. With such devices, users can curate new examples for the
prosthesis to update its mapping between muscular contractions
and gestures.

However, pattern recognition-based prosthesis control has not
been widely used in rehabilitation and commercial devices because
strategies for user-mediated model training remain unclear, and
therefore classification accuracy remains low in ecological settings.
EMG signals can also change due to muscle tiredness or stump
posture. As a result, user control deteriorates in ways that remain
to be fully understood [15], and the classifier must be retrained to
account for these changes.

Increasing our understanding of which model training strategies
yield better performance and better system comprehension might
fill the gap between in-lab and real-life performances for prosthesis
control [15]. Previous works have addressed different strategies to
train users to control their prostheses. It has been shown that train-
ing the user to provide more consistent and distinguishable muscle
contraction patterns improves classification accuracy [16, 31]. Fur-
thermore, research showed that real-time visual guidance improves
the quality of EMG data [12, 13, 32]. Training the user to perform
muscular contractions and train an ML model simultaneously can
be seen as an HCI problem, where a co-adaptation occurs between
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the user and the classification model. This has been investigated par-
ticularly in the domains of Interactive Machine Learning (IML) [1]
and Interactive Machine Teaching (IMT) [35]. The IML approach,
at the intersection of HCI and Machine Learning, aims to include
end-users, including non-ML expert stakeholders, in the develop-
ment of ML models through dataset curation, model steering, or
the choice of performance metrics. Interactive Machine Teaching
specifically focuses on the inherent ability of humans to teach, i.e.,
to take the perspective of a learner and curate relevant training ex-
amples to address its weaknesses. IMT research calls for the design
of interactions that leverage these human abilities, including the
ability of users to develop an accurate mental model of the machine
learner being taught [17, 38].

This paper aims to study different teaching strategies of ML-
based myoelectric prostheses, with different degrees of freedom
to organize the training sequence. We want to understand how
certain factors affecting the gesture examples provided by users for
training the ML-based prosthesis impact the system’s performance
and the user’s understanding of the system’s behaviour. In particu-
lar, this research aims to answer the following research question:
How does the teaching strategy affect recognition accuracy and user’s
understanding of an ML-based prosthesis when the training strategy
is either random, directed by the user, or directed by the learner ac-
cording to an optimisation criterion? Two assumptions guide this
research question:

Assumption 1. Allowing the user to take an active role
(“teacher”) by structuring their training session can help them test
and improve their understanding of the system. This assumption
is guided by a) the learning by design (LBD) approach [18], which
argues that being engaged in the process of design enhances skill
acquisition, and b) the interactive machine teaching approach [35],
suggesting that users engaged in the role of a machine “teacher”,
rather than annotator, develop investigative and self-reflecting be-
haviors [37]. This is a teacher-led approach.

Assumption 2. Guiding users to select gesture classes that max-
imize the separability of the gesture classes might lead to better
model accuracy. This assumption is led by the fact that in the context
of prosthesis control, increasing the separability of EMG patterns
in the feature space of the classifier is conceptually linked to higher
accuracy [12]. Since the machine learner queries the human teacher,
this is a learner-led approach.

To answer this research question, and test our assumptions, we
conducted a controlled experiment investigating the effects of dif-
ferent training strategies on recognition accuracy and user’s under-
standing of the recognition process. During training, gesture classes,
i.e., the target movements to be triggered by the prosthesis are se-
lected sequentially according to three conditions: either at random
(control condition), by the participants themselves, or by a gesture-
separability algorithm. Then, participants must demonstrate the
corresponding muscular contraction to create a training set and
update the recognition model. They visualised a prosthetic hand
performing the recognised gesture as feedback. Our contributions
are twofold: 1) We empirically identified model training conditions
that leverage recognition accuracy and user understanding of an
ML-based myoelectric prosthesis, and 2) we provide directions for
research and for the design of training sessions that could support
users of myoelectric prostheses.
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2 RELATED WORK

We first present how training has been designed for ML-based pros-
thesis control and then report findings from the Machine Teaching
literature, which shed light on how humans teach concepts to ma-
chine learners.

2.1 User training for ML-based prosthesis
control

2.1.1 User training strategies. The importance of user-training in
the ecological context of prosthesis control through pattern recog-
nition of muscle activity was first highlighted by Powell et al. [31].
In a ten-day experiment, they showed that amputees improved their
control performance with the help of visual feedback, which showed
the movement of a virtual prosthesis. Subjects were coached by the
experimenter to produce more separable and consistent gestures.
However, another study with able-bodied subjects [21] showed
that subjects can improve with training alone, independently of
feedback or with coaching during training. More recently, research
has shown that feedback in the form of visualization of EMG data
points in a Linear Discriminant Analysis classifier’s (LDA) feature
space can accelerate user-training [12, 13]. De Montivalet et al. [12]
showed that using a continuous feedback based on the separability
index of class means improved the accuracy of the retrained class
without affecting overall accuracy. When compared to using the
labels of the classifier as feedback, this effect was larger.

Since training alone can help humans provide better EMG pat-
terns, it remains to be seen whether other training parameters can
lead to further improvements. Only a few studies [2, 44] explored
the effects of training curricula in a prosthesis context. However,
this remains to be explored for ML-based prostheses. These studies
applied principles derived from motor learning research [25, 33, 41]
to determine effective training methods. For example, Bouwsema et
al. [2] studied the order of practice tasks (based on functional uses
of prosthesis) and their effect on movement time with a myoelectric
simulator. Their findings suggest that performance in daily life is
independent of training structure, but a blocked practice leads to
faster learning than a random practice.

2.1.2  User training phases. Many training paradigms described in
the literature involve iterating over one or several of the following
phases: data collection, user training and testing [12, 20, 22, 31].
The data related to a gesture example is labelled automatically
when a gesture is cued, and the procedure involves retraining the
classifier on new data. This is sometimes called Supervised Recal-
ibration. For example, De Montivalet et al. [12] retrain a specific
gesture class after collecting data from all gesture classes. Users
only get a chance to test the classifier at the testing phase, after a
data collection phase to train the gesture classifier, and thus the
user can only make adjustments to the classifier in the next training
phase. This restrains human learning [4]. To address this problem,
Fang et al. [13] adopt incremental training and users are provided
with classifier feedback at each training trial. Nishikawa et al. [28]
tackle this problem through an online learning mechanism. The
user provides teaching signals when the virtual hand is moving
unsatisfactorily, to generate new data. Undesirable data is elimi-
nated based on different metrics. They show that this learning and
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data elimination mechanism simplifies decision boundaries. In both
studies, gesture classes are cued randomly. Finally, Szymaniak et
al. [42] diverge from this 3-phase training protocol by proposing
an active learning framework to address the cost of data labelling.
Assuming that a dataset of EMG data can be collected prior to train-
ing, they simulate different sampling strategies and conclude that
active learning surpasses random sampling.

The research in ML-based myoelectric control sought different
ways to impart basic concepts of Machine Learning control to
users during training, so that they can retrain their classifiers more
efficiently. To understand how users can better steer model training
in the desired way, we now look at how humans have taken the
role of teachers to teach a machine.

2.2 Guiding humans to teach machines

Research in interactive machine learning (IML) and human-robot in-
teraction (HRI) investigated how guidance can help human teachers
convey concepts to a machine learner. Teaching guidance mainly
takes two forms: delegation of initiative and instructions. Delegation
of initiative mainly explored active learning (AL), i.e., the possi-
bility for the machine learner to be curious and query novel and
informative examples [40]. Cakmak et al. [5] investigated how hu-
mans teach a learning robot in a finite concept space (conjunction
of nominal features). Their study compared self-directed teaching
(no learner’s query) with three active learning variants: full AL,
mixed-initiative AL, or human-controlled AL. They found that ac-
tive learning conditions, including human-controlled AL, resulted
in significantly higher F1 scores than self-directed teaching. In
another study, Cakmak et al. [8] explored instructional teaching
guidance across more complex and realistic tasks, including binary
classification of sketches: participants were primed with different
heuristics, e.g. an efficient teaching strategy must sample examples
close to the decision boundary. Their results found that instruc-
tional guidance influenced human teaching toward being more
beneficial for the machine learner’s accuracy. The authors pointed
out participants’ tendency to provide typical rather than borderline
examples when unguided, to be more successful at curating positive
rather than negative examples, and to forget what examples were
already shown to the system. Several authors [8, 10, 37] concur
about the complex entanglement between the interaction workflow,
concept space (complexity of the concept), the learning algorithm,
and the data domain. A large benchmark conducted by Pereira et al.
[29] concerning Active Learners revealed that performance gains
are uneven across models, domains, and to a lesser extent, sampling
strategies. Preliminary findings by Sanchez et al. [37] comparing
simulated active learning with real human teaching curricula in a
multi-class recognition of images with a deep learning model also
contradict Cakmak et al. [5], as self-directed human teachers seem
to outperform simulated active learners.

Our work contributes to uncover the complex interaction be-
tween human teacher and machine learner by studying a real-world
problem with infinite concept spaces and little-studied domains: the
multi-class recognition of EMG signals. The proprioceptive nature
of muscular contraction makes it challenging to design similar ex-
periments to those in the visual domain. Active learning scenarios
in which the learner queries output labels from input trajectories
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are not feasible, as EMG signals are hard to represent and too dis-
tinctive. Instead, our work investigates demo queries [7], i.e., the
active learner chooses a class and queries a teacher’s demonstration.
Demo queries, also called active class selection [26], afford greater
human control than label queries as users can still induce variations
in the input data points.

2.3 Humans’ mental models in interactive ML

The research literature involving a human teacher and a machine
learner focuses primarily on model performance. However, an es-
sential aspect in ML-based myoelectric control is users’ compre-
hension of the model, also referred to as the user’s mental model.
Mental models about a machine learner can be functional—the
comprehension of the model’s learning or final behavior— and
structural—the understanding of the machine learner’s underly-
ing mechanisms (e.g., neural network, k-NN, etc.). In our case, we
are interested in assessing participants’ functional mental model,
since the comprehension of the learner’s behavior—its strengths
and weaknesses—can help users adapt their muscular contractions
and avoid errors in real-life scenarios.

The approaches employed to assess users’ mental model of an ML
system in the interactive ML literature often triangulate quantitative
(objective understanding) and qualitative (self-reported understand-
ing), including: 1) assessments of users’ predictive accuracy (quan-
titative, objective), i.e., users’ ability to predict the system’s pre-
dictions [9, 39]; 2) verbalization analysis (qualitative, self-reported)
from interviews [24, 39], think-aloud protocols [38, 39], or written
responses to open-ended questions; 3) analysis of response from
close-ended questions (qualitative, self-reported) during post-hoc
surveys [5, 17, 19, 23, 24]. The research studies cited span the fields
of interactive ML, human-robot interaction, and explainable Al and
offer valuable insights for our work.

On the influence of learner’s performance on users’ compre-
hension, Hedlund et al. [17] found that the machine learner’s (a
reinforcement algorithm) performance can affect a teacher’s men-
tal model about the learner (capacity, reliability) and their own
teaching capacity. Sanchez et al. [39] investigated how people use
and understand two types of uncertainty feedback while teaching
an image classifier. Although neither epistemic nor aleatoric un-
certainty feedback improved users’ predictive accuracy compared
to each other, they also found a strong correlation between users’
predictive accuracy (e.g., objective understanding) and the machine
learner’s final accuracy. This confirms the intuition that accurate
models are easier to comprehend than inaccurate ones.

On the influence of curriculum on users’ comprehension, Cak-
mak et al. [5] also conducted subjective ratings from a post-hoc
survey, which revealed that people had a better mental model of the
system’s performance in the 3 active learning (AL) conditions rather
than self-directed teaching. Participants, however, reported less en-
gagement in the full AL condition. Using a think-aloud protocol,
Sanchez et al. [38] explored humans’ understanding when incremen-
tally teaching a deep neural network to recognize sketches. Their
results underscore the importance of the training sequence, both
for the classifier performance and user understanding of the model
behavior. In particular, curating examples which are imbalanced
across classes at the beginning of the teaching was detrimental
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to learners’ performances and users’ comprehension. Researchers
[5, 38, 43] converge on the usefulness of guidance prior or early
in the teaching phase. Letting users interact with data trigger in-
vestigative behaviors [38] but requires engagement and time [9],
suggesting a trade-off between efficiency and understanding.

Our work also combines methods to assess users’ functional
mental model: we investigate both objective (users’ predictive abil-
ities) and self-reported understanding (think-aloud protocol and
survey). Our results might shed light on the relationship between
the training curriculum and users’ functional mental model in the
specific use case of ML-based myoelectric prosthesis control. This
use case is unique compared to the rest of the literature presented
above, as it involves complex signals that results from users’ implicit
knowledge and fine-grained proprioception.

3 USER STUDY

We want to evaluate participants’ ability to build accurate classifi-
cation models of muscle activity based on different user-training
strategies, and to investigate to what extent they foster the devel-
opment of accurate mental models of the trained classifiers. We
compare three model-training conditions under which participants
incrementally train the gesture classifier: (1) Random-Condition
(RC), which cued gesture classes randomly; (2) Teacher-led Con-
dition (TLC), in which the user could choose the gesture classes
for which to give examples; and (3) Learner-led Condition (LLC),
which cued gesture classes based on their separability in the feature
space. To assess the effects of the training condition on participants’
functional mental models, we combined objective and self-reported
insights. In this section, we provide the details of the experimental
protocol.

3.1 Participants

51 people participated in this study (25 males,25 females, and 1 non-
binary, aged between 18 and 36, M = 24.8, SD = 4.2). We recruited
able-bodied participants to ensure comparable prior knowledge
and sensorimotor expertise with myoelectric control technology.
They were required to have no neurological or upper-extremity
musculoskeletal problems that might influence performance. They
received 15 euros as compensation. Participants’ experience in
Machine Learning and Robotics in Healthcare varied from novice
(no knowledge) to advanced (experienced in Machine Learning
/ Robotics in Healthcare) (see table 1). The University’s Ethical
Research Committee approved all experimental procedures.

3.2 Task

We asked participants to teach the best possible recognition system
for the following 8 gestures: (1) Palm Down, (2) Palm Up (3) Close
Hand (4) Open Hand, (5) Close Pinch, (6) Open Pinch, (7) Rest Hand,
(8) Point Index. These eight gestures are depicted as pictograms in
Figure 1 and were specifically chosen because they are common
actions to be performed by upper-limb amputated users fitted with
current commercial myoelectric prostheses. They define the typical
gesture set used in studies in rehabilitation engineering focusing
on myoelectric prosthesis [12].

Training the best gesture recognition system implies that par-
ticipants must consistently produce precise muscle contractions
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Figure 1: The ML-based myoelectric prosthesis had to learn a
set of gestures from examples provided by participants. We
considered 8 gestures, from left to right: Palm Down, Palm
Up, Close Hand, Open Hand, Close Pinch, Open Pinch, Rest
Hand, and Point Index.

for the eight gesture categories, ensuring that the resulting model
achieves minimal recognition errors. We implement an incremen-
tal training protocol, where the model is retrained for each new
example demonstrated by participants.

As further detailed below, the interface shows gesture icons that
indicate to the participants which gesture to perform now. The icon
represents the gesture class used as a ground truth label (see Figure

1).
3.3 Apparatus and Setup

The experiment consists of four components: a muscle contraction
sensor, a web-based interface, a Python-based software module, and
a prosthetic arm. Figure 8a illustrates the setup with the various
components we explain in this section. The surface myoelectric
activity of the forearm is measured with a dedicated device, a Myo
armband from Thalmic Labs. The Myo armband comprises 8 chan-
nels to record electro-physiological signals with an 8-bit resolution.
No specific skin preparation was used before placing the armband
on the participant’s forearm, approximately 5 centimeters from the
elbow joint.

EMG data are sent to the Python-based software module. Fea-
tures are extracted from the Root Mean Square (RMS) of the
raw EMG signal. It was computed from the surface EMG (sEMG)
over a 128-ms-sliding analysis window, with a 32-ms overlap be-
tween successive windows. The dataset is available on Zenodo:
https://doi.org/10.5281/zenodo.10528482. Among the wide variety
of features that have been investigated in the literature [30], RMS
features are known to be the most efficient and robust processing
for classification of SEMG with LDA. In addition, they are standard
features in the literature on myoelectric prosthesis arms, allowing
the community to compare our results with other research such as
Roche et al. [36] or De Montalivet et al. [12]. We recorded about
2 seconds of data and averaged the features to obtain a vector of
8 RMS values for the 8 channels of the Myo Armband. For classi-
fication, we used a Linear Discriminant Analysis (LDA) classifier
(taken from the Scikit-learn python library !). We chose the LDA
since it is the most used algorithm in an ecological setting to clas-
sify EMG signals [12, 45]. In addition, LDA, compared to more
recent approaches with neural networks [27, 34], allows for fast
training updates of the model, enabling incremental training. The
Python-based software module sends classification predictions to
the web-based interface through a web socket. The Python-based
software module also sends the classification prediction to the pros-
thetic arm through WiFi to provide feedback on model performance
to the participant.

Uhttps://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnal
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Knowledge in Healthcare Robotics

Knowledge in Machine Learning

(Expert) 0

1

l 3

14

(No knowledge) 33

0
3
7
12
29

Table 1: Number of participants having knowledge in (1) Robotics and (2) Machine Learning. Ratings were provided on a likert

scale of 0 (expert) to 5(no knowledge).

The web-based interface was created using the Marcelle toolkit?,
a modular open-source toolkit for programming interactive ma-
chine learning applications. The interface shows the icons described
above, and a capture button used by participants to record muscle
contraction associated with gesture classes. Participants are told to
hold the gesture and click on the ’Capture’ button, which records
EMG data for approximately 2 seconds.

To provide motion feedback, a TASKA, NZ prosthetic hand 3
along with a conventional electric wrist rotator is used. The pros-
thetic hand was programmed to enact the 8 gesture classes.

The training pipeline is as follows: a gesture class is selected (by
the system or the participant, depending on the condition), and
the participant provides an example of that gesture class through
muscle contractions. After data windowing, the RMS is computed
from the acquired EMG data. This feature is then used for classifi-
cation with LDA. The predicted class is sent to the prosthetic hand
to trigger the appropriate motor command.

3.4 Conditions and experimental design

We used a between-participant experimental design, where we
compared three conditions, each with different ways of selecting
gestures for training.

e random condition (RC): at each trial during training, the
system queries a gesture to be executed by the participant.
This gesture is picked pseudo-randomly by shuffling the set
of 8 gesture classes. Consequently, the number of gestures
executed by a participant is balanced among gesture classes.
There is no consecutive repetition of a gesture class, i.e.,
gesture classes always change from one trial to another.

e teacher-led condition (TLC): at each trial during train-

ing, the participant selects the gesture class for which they

wish to produce an example. The number of gestures per
class executed by a participant depends on the sequence cre-
ated, which can lead to an imbalanced dataset across classes.

Participants (i.e. teachers) can also choose to provide several

consecutive examples for a gesture class.

learner-led condition (LLC):the system (i.e. the learner)

sorts gesture classes based on a separability index and queries

the least separable gesture class at each trial during training.

We compute the gesture class separability index as a ratio

of the inter-class variance to the intra-class variance com-

puted on the captured data (EMG features; see more details
below). The intra-class variance for a class ¢ is computed

https://marcelle.dev [14]
3https://www.taskaprosthetics.com/
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as the mean-variance of EMG data within c. The inter-class
variance is computed as the mean of the variance of EMG
data from class ¢ and every other class ¢’ different from c. A
pilot study showed that, in practice, this strategy can create
a highly imbalanced dataset depending on the initial data
points. Therefore, to mitigate the curation of imbalanced
training datasets, the gesture separability index is weighted
by the inverse number of instances for this gesture (see Al-
gorithm 1).

Algorithm 1: Gesture Class Separability Index

Input: A training dataset: (Xirain, Ytrain)
Output: Per-class separability index: ST
for c in NumClasses do

V arinter-class (€)
SI c) «— inter-class .
( ) Varintra-class (¢)

SI(c) « SI(c) = ClassSize(c)

NumcCI : >
oy 1ChasseS ClassSize(n)

end

Two of the conditions, namely teacher-led and learner-led, can
lead to training datasets which are not balanced. A common assump-
tion in supervised machine learning is that training data points are
independent and identically distributed (i.d.d) regarding the prob-
lem under scrutiny. This assumption is rarely met in simulated or
human teaching, as well-explained in Zhu et al. [46]. Teaching sets
are often non-independent and identically distributed (non-i.i.d.)
as they might be designed, for instance, to mitigate the inherent
ambiguity between two classes. For this reason, we do not enforce
balanced training sets in the teacher-led and learner-led conditions
in our experiment. Strictly forcing an equal number of instances
per class, besides the random condition, might undermine a crucial
characteristic of teaching: planning and learner adaptivity.

3.5 Procedure

We welcomed participants and explained the task, the different
phases, and the interface. Participants were fitted with a Myo arm-
band. They were asked to place the elbow of the dominant arm on
a ball of wool for comfort and to maintain this position throughout
the experiment. To familiarize participants with the gestures, they
were shown icons of each gesture and an image showing the corre-
sponding gesture. Participants in all groups performed four phases
(the procedure is also depicted in Figure 3).
(1) Initialization. This phase aims to provide an initial dataset
to train the gesture classification model before starting the
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Gesture execution

Motion feedback
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Web module

Interface

Gesture : Gesture-class
commands isampling

T

LDA € Training Set

t

> Feature
extraction

Python module

Figure 2: Experiment setup: The participant wears the Myo armband on the forearm and performs a gesture. A screen in front
of the participant displays the interface for capturing data. The interface for the random condition (RC) is shown here. The
interfaces for the other conditions can be found in the appendix (see section 7.1). On the left, a prosthetic forearm (composed
of a wrist rotator and a prosthetic hand) provides feedback during the training phase.

Random Condition
104 randomised gesture trials

Mental model

Initialisation Teacher-led Condition Test set collection

16 randomised gesture trials |=—»| 104 gesture trials determined by |=—>|48 randomised gesture trials|—>
(2 trials per gesture) participants (6 trials per gesture)

evaluation
48 gesture trials (3 positives,
3 negatives per gestures)

Questionnaire

N /!
Learner-led Condition

104 gesture trials based on
separability index

Figure 3: The 5-phase experimental design. It involved a between-subject comparison of three conditions. Participants received

feedback only during the training phase.

training phase. Participants are asked to record two gesture
examples per class (16 trials in total). Each gesture query is
picked according to a pseudo-random strategy. There is no
repetition of gestures.

(2) Training. During the training phase, participants are asked
to give an example of a gesture (RC and LLC) or to choose
a gesture for which to provide an example (TLC). Partici-
pants are briefed about the conditions: in the teacher-led
condition (TLC), they are told to choose which gesture they
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want to train, and in the random condition (RC), they are
told that the gesture classes are proposed in a random order.
Finally, in the learner-led condition (LLC), participants are
told that the most inconsistent gesture classes are prompted.
In the RC and LLC conditions, gestures are presented as
icons, and in the TLC condition, participants select gesture
classes by clicking on the corresponding button illustrated
by the icon. After each example, the classifier is trained on
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the entire dataset collected until this point, and the partic-
ipant receives gesture feedback from the prosthetic hand.
For instance, if a participant performs the “close hand” ges-
ture, and if the classifier correctly recognizes this example as
“close hand”, the prosthetic hand closes. Participants are told
to pay attention to the feedback, which could be leveraged to
reflect on future gestures. This phase includes 104 trials. The
number of trials was decided based on a pilot study, which
showed that the learning curve of the classification model
plateaued after around 100 trials. In total, the aggregation of
the examples from both the initialization and training phases
leads to 120 gesture examples in the training set.

Post-test. To assess the model’s final accuracy after training,

the participant completes a post-test. This post-test served

as a data collection phase, comprising 48 trials to create a

test set of 6 trials per gesture class. This phase was similar

to the initialization phase in that the gestures were collected
randomly and without any feedback.

Positives-Negatives. To assess participants’ mental model

of the system, they were asked to complete a task that in-

volved providing gestures while explaining their reasoning.

In this task, participants were prompted to give three gesture

examples that would be correctly recognized, called positives,

and three examples that would incorrectly be recognized,
called negatives. They were told that they could give different
examples or repeat their examples. The examples could be
drawn from observation during training or from their own
understanding and interpretation. Participants were asked
to verbalize (think aloud) their strategies to produce positive

and negative examples. Therefore, this phase comprised 48

trials. Each participant, across conditions, experienced the

same gesture order. The 3 positives were queried in a row,
followed by the 3 negatives.

(5) Questionnaire. Finally, participants were asked to answer
a questionnaire where they rated the perceived accuracy of
gestures of the trained model. Perceived accuracy is mea-
sured on a scale of 0 to 100, where 0 means never correctly
recognized and 100 means always correctly recognized.

G

~

“

~

3.6 Data Collection and analysis

We logged each example recorded by participants and the classifier
trained by users after each trial to compute the model accuracy
along trials. During the ’Positives-Negatives’ phase, we collected
additional EMG data and participants’ verbalizations with audio
recordings. Finally, we collected answers to the post-study ques-
tionnaire (cf. Appendix 7.2) to assess the participant’s mental model.
Based on these collected data, we computed the following measures:

Model Accuracy. We compute the model accuracy by selecting
a trained model at a given trial, from trial 16 (after initialization) to
trial 120 (at the end of training), and use data collected during the
post-test phase as test set. The test set is balanced and contains 6
instances of each gesture. Thus, using Sklearn’s API, we compute
the accuracy score at each trial, computed as the fraction of cor-
rectly classified samples. Accuracy is computed per gesture class to
take into account the variation between classes when calculating
statistics between conditions.
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Gesture separability. To understand how the separability of the
EMG data evolves over time, we compute a measure of participants’
ability to produce consistent and separable gestures over 3 phases:
the start of training (16 gestures), end of training (120 gestures) and
the post-test set (48 gestures). In the next section, these 3 phases
will be designated as the variable PHASE. Gesture separability is
computed similarly to the separability index used in condition LLC:
we compute the gesture class separability as a ratio of the inter-
class variance to the intra-class variance computed on the captured
data. This computation is done pairwise to ensure a comparable
metric between the beginning of training (where only 2 instances
per class are available) and the end of training.

True Positive and True Negative rates. To quantify differences
in participants’ understanding of two types of tasks, i.e., their ca-
pacity to identify positive and negative examples of gestures, we
calculate the true positive rate, which is the quantity of correctly
classified gestures among the set of per-class positives. We then
calculate the true negative rate for the negative examples, which
is, in our case, the quantity of incorrectly classified gestures in the
per-class negative examples. For both rates, high values mean an
accurate model for positives and, respectively, a model that handles
negatives correctly.

Participants’ perception of class accuracy. We asked partici-
pants to complete a post-study questionnaire to assess their ability
to keep track of training (cf Appendix 7). We compute the correla-
tion between the perceived accuracy for each class and the actual
accuracy provided by the model at the end of the training phase,
using data collected during the post-test set as test set.

To compare each participant’s answers in relation to all the other
participants, we transform the raw accuracy values to standard
scores (z-score).

4 RESULTS

In this section, we present the findings of the user study, start-
ing with the analysis of the performance of the models built by
participants, followed by the analysis of the mental models of the
participants after having trained their gesture classifiers.

4.1 Machine learner’s performance

In this section, we analyse the machine learner’s performance and
the extent to which the created training sets include separable
gesture classes according to the training condition.

4.1.1 Model accuracy. We first analyzed whether the initial models
built by participants (model comprising the initial 16 trials) are dif-
ferent between conditions, i.e. they result in significantly different
accuracy values if tested on the post-test data. The mean accuracies
for the initial models are as follows: 30.14 %(RC), 37.62 %(TLC)
and 30.27 %(LLC). A Shapiro-Wilk test shows that the per-class
accuracy values do not follow a normal distribution (p < 0.05).
We conducted a non-parametric Kruskal-Wallis test, which shows
no significant differences between initial models trained for each
condition (y? = 3.30,df = 2, p = 0.19).

We then examined how the accuracy of the models changed
based on the training conditions. We assessed model accuracy after
each new gesture was demonstrated and added to the training set.
Since the model is updated after each new gesture, the number of
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user trials equals the size of the training set, ranging from 1 to 104.
We computed the model accuracy for each trial using post-test data
as test set. The average learning curves for each condition and the
95% confidence intervals are shown in Figure 4a.

We evaluated the final model from the training phase, which is
trained on all the examples demonstrated by users, using the post-
test data as test set. The mean model accuracies for each training
condition are as follows: 70.83% for RC, 65.81% for TLC, and 68.38%
for LLC. To verify whether these means are significantly different,
we conducted a Kruskal-Wallis test, taking ACCURACY as dependent
variable and CoNDITION as independent variable. We found no
significant differences between training conditions on the per-class
model accuracy ( )(2 =0.74,df = 2,p = 0.69). Therefore, the three
conditions lead to equivalent model performance after the training
phase.

Even though there were no statistical differences between the
mean accuracies of the model at the beginning of training, we ob-
served a variability between the initial mean values, which could
suggest a certain level of heterogeneity between groups. Therefore,
we carried out a complementary analysis in which we considered
the average delta accuracy (difference between the final and ini-
tial accuracy). Figure 4b reports the results. A Kruskal-Wallis test,
taking DELTA ACCURACY as dependent variable and CoNDITION
as independent variable, shows a significant difference between
conditions (y? = 19.48,df = 2,p < 0.001). A posthoc analysis
with Dunn’s test showed that LLC leads to a significantly higher
improvement in accuracy compared to RC (p < 0.05) and TLC
(p < 0.001), and there is a borderline difference between RC and
TLC (p = 0.053). Consequently, although there is no difference
between model accuracy created between the conditions, the per-
formance improvement is larger when gestures are queried based
on their separability and smaller when users choose the gestures
to be trained.

Finally, we measured the learning rate to assess the evolution
of skill development during training. We fit a linear regression
model to the training set size (i.e., number of trials) and task per-
formance. The logarithm of task performance plotted against the
logarithm of the number of trials gives a straight line. To com-
pare learning rates across conditions, we conducted a one-way
ANOVA, taking LEARNING RATE as dependent variable and Con-
DITION as independent variable (a Shapiro-Wilk normality test
shows that data are normally distributed (p = 0.62)). The ANOVA
shows a significant effect of ConpITION (p<0.001). A post-hoc
analysis shows that the learning rate is higher for TLC than LLC
(t = —4.655,df = 31.369, p < 0.001). Furthermore, the learning rate
is higher for RC than LLC (t = 2.3891,df = 30.757, p = 0.023).

¢ Finding 1. Performance improvements of the ML-based
myoelectric prosthesis are higher when gesture classes are
queried to optimize gesture separability than in the random
or Teacher-led curriculum.

e Finding 2. Performance improvements of the ML-based
myoelectric prosthesis are faster when the user chooses ges-
ture classes to demonstrate rather than queried to optimize
gesture-separability or at random.
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Figure 4: (a) Model accuracy evolution during training. (b)
The difference in model accuracy between the beginning and
the end of the training phase for each condition. (c) Mean
learning rates of model error reduction for each condition.

4.1.2  Gesture Class Separability. Incrementally training the ges-
ture recognition model led to datasets that may differ across condi-
tions. In this subsection, we analyze these demonstration datasets
regarding gesture class separability. High gesture class separability



Comparing Teaching Strategies of a Machine Learning-based Prosthetic Arm

implies concentrated gesture class clusters (low intra-class vari-
ance) far from the other (high inter-class variance). This index of
gesture class separability is computed similarly to condition LLC (cf
Section 3.6). Therefore, this measure indicates the consistency of the
executed gestures, where more consistent gesture classes will lead
to higher separability. Figure 5 depicts the mean separability values
per condition at three different phases: at the beginning of the train-
ing session (after the first training trial), at the end of the training
phase (after the last training trial) and at the post-test phase. First,
we performed a Kruskal-Wallis test at each phase, considering Con-
DITION as independent variable and SEPARABILITY as dependent
variable. We found a significant effect of CoNDITION only at the
end of the training (y? = 18.3,df = 2,p < .001) where gesture class
separability is higher for LLC than in the other conditions. We also
inspected how the values of separability vary according to the phase.
We performed Kruskal-Wallis non-parametric tests with PHASE as
an independent variable and SEPARABILITY as dependent variable,
for each ConpITION. We found that PHASE has a significant effect on
SEPARABILITY for each condition ()(2 =13.5,df =2,p < .01 for RC,
x%=30.2,df =2,p < .001 for LLC and y? = 19.9,df = 2, p < .001
for TLC). For each condition, gesture class separability values are
higher at the end of training and at the post-test compared to the
separability at the beginning of training. In addition, for LLC, sepa-
rability is higher at the end of the training phase than post-test, as
shown by Dunn’s test, p = 0.02. It shows that overall, the gesture
class separability increases, which can be related to the improve-
ment in performing gestures during training, with a higher increase
for LLC. However, at post-test, gesture class separability values are
comparable across conditions.

e Finding 3. The separability of gesture demonstrations in-
creases during training, irrespective of the condition.

¢ Finding 4. Increase of gesture separability is significantly
higher when gesture classes are queried to optimize gesture
separability than in the Random or Teacher-led condition.

4.2 Human teachers’ mental model

In this section, we assess the mental models of participants after
they built their gesture classifier.

We assessed participants’ mental model following two methods.
First, we assessed participants’ ability to predict where the ma-
chine learning model will make correct or incorrect predictions. We
present results regarding participants’ ability to execute correctly
classified (positives) or incorrectly classified (negatives) examples
for each gesture class. Second, we assess self-reported understand-
ing through participants’ answers to a post-training questionnaire
on their perceived accuracy for each gesture class.

4.2.1 Participants’ predictive abilities about the model. We want to
test participants’ ability to produce gestures of each class, which
will be correctly recognized by the system (positives), and ges-
tures that will not be correctly recognized (negatives). We evaluate
the true positive and true negative rates of examples collected for
both types (positive and negative), as well as participants’ inter-
pretation of these two types of examples. To compare the rates of
true positive and true negative for each class and between con-
ditions, we first conduct a Kruskal-Wallis test with TRUE Posi-
TIVE RATE as dependent variable and CONDITION as independent
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variable. This yields a significant difference between conditions
(x? = 7.31,df = 2, p = 0.026). Pairwise comparisons using Dunn’s
test show that the mean true positive rate is higher for condition
LLC than condition TLC (z = 2.49, p = 0.039, see Figure 6). There is
a borderline effect between RC and TLC (z = 2.16,p = 0.061) and
no difference between RC and TLC (z = 0.32, p = 0.75). A similar
test considering TRUE NEGATIVE RATE as dependent variable and
CoNDITION as independent variable shows no differences between
conditions for the negative examples. Finally, a Kruskal-Wallis test
considering the type of test (True Positive Rate and True Negative
Rate) as independent variable and the rate as dependent variable
shows that True Negative Rates are significantly higher than True
Positive Rates (y% = 25.26,df = 1,p < 0.001). Overall, participants’
understanding of positive examples is worst for condition TLC,
while participants’ understanding of negative examples does not
differ across conditions.

During the think-aloud phase, a number of participants (P4, P8,
P19, P20, P41) explained that to create a positive, they exaggerated
the gesture. For example, while giving a positive example of the
gesture ‘Palm Down’, P41 said : “[..Jrotate the hand until I hurt
myself”. Some participants considered positive examples of gestures
to be clear, slow, and precise : “high up and poised, like this” [P19],
or “I'm going to make a slow, detailed movement” [P4]. On the other
hand, negative examples were considered as fast, incomplete, and
casual: “A negative would be a bit of a jerky movement, like this.
Maybe it’s too fast for it” [P19], or “a lighter rotation” [P1].

A few participants mentioned that it was difficult to imagine
negative examples. P21 pointed out: “In general, the robot recognizes
the ‘Close Hand’ at all times, it’ll be hard to create a negative for that”.
Some participants who encountered errors during training easily
identified examples that could confuse the system. While giving a
negative example of ‘Close Hand’, P31 said: “Earlier, it interpreted
[Close Hand] as a downward rotational movement. I'm actually going
to make a tiny downward movement too”. Besides recalling training
errors, another strategy employed by participants to create negative
examples was to combine gestures. For instance, while creating a
negative example of ‘Palm Down, P23 said: “It’s a mixture of Close
Hand and Palm Down”, which may have contributed in deceiving
the model.

¢ Finding 5. Participants’ predictive abilities about the trained
model are above random. Surprisingly, participants can bet-
ter reproduce negative than positive examples.

¢ Finding 6. Participants’ ability to reproduce correctly iden-
tified examples is significantly lower when the user chooses
gesture classes to demonstrate rather than queried to opti-
mize gesture-separability or at random.

4.2.2  Participants’ perception of class accuracy. As a second eval-
uation of mental models, participants were required to answer a
questionnaire about their perception of how well the system learned
to recognize each gesture. Participants’ answers about their per-
ceived accuracy of each gesture class had to be chosen among 11
discrete percentage values ranging from 0 (bad recognition) to 100
(excellent recognition). Since participants’ answers depend on their
rating style and the scale provided (e.g., a participant’s perception
of a good recognition can be 80% while another’s perception can be
100%), we transform all values to z-scores. This allows us to consider
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Figure 6: True positive and negative rates from examples provided by participants after training. Participants have a less good
mental model of what it means to produce positive examples of gestures when trained under condition TLC.

participants’ answers relative to each other. Then, we computed
a Pearson correlation coefficient to assess the linear relationship
between perceived accuracy for each gesture class at the end of
training and the actual accuracy computed on the post-test data
at the end of training. Figure 7 shows the results. The results indi-
cate a positive relationship for LLC (Pearson’s r score is 0.30, with
p < 0.001, see Figure 7c) while there is no significant correlation for
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the other two conditions TLC and RC (see Figures 7a and 7b). This
suggests that condition LLC allowed participants to better keep
track of classification errors during training.

e Finding 7. Participants better perceive the ML-based myo-
electric prosthesis accuracy when gesture classes are queried
to optimize separability during training than for the Random
or Teacher-led conditions.
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Figure 7: Correlation of z-scores of actual accuracy values
(y axis) and the corresponding z-scores of participants’ per-
ceived accuracy values (x axis) for each gesture class. The
correlation is significant for condition LLC.

5 DISCUSSION

In our study, we investigated user-driven teaching strategies for
ML-based myoelectric prostheses and their influence on the ma-
chine learner’s accuracy and the human teacher’s mental model.
From the machine learner perspective, we found that the model’s
performance maximally increases when gesture classes are queried
to optimize gesture separability, outperforming both random and
teacher-led strategies. That said, we also showed that training is
faster when users select the gesture class to be demonstrated. The
three training strategies similarly led participants to increase the
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separability of examples across gesture classes, with a greater in-
crease when gesture classes were queried to optimize gesture sepa-
rability. From the human teacher perspective, participants’ ability
to predict the model’s behaviors was more accurate, particularly
in reproducing negative examples over positive ones. Participants’
predictive abilities, though, diminish when they are left to select ges-
ture classes during training, a discrepancy that is not observed with
negative examples. Lastly, participants’ perception of the model
accuracy is better when gesture classes are queried to optimize sep-
arability during training. In the following subsections, we discuss
the implications of the results, which can inform the design and
further research on ML-based prosthesis control.

5.1 Influence of training strategy on model
accuracy

Several aspects of a training strategy can contribute to its efficiency.
We tested whether giving users the choice to select the gesture
class to train (teacher-led condition) results in better recognition
accuracy than imposing gesture classes to train (random condition
and learner-led condition based on a gesture separability index).
We found that the teacher-led strategy did not yield better accuracy
than the other training strategies. This is in line with findings in the
interactive machine teaching literature, where Cakmak et al. [5, 6]
showed that self-directed human teaching is rarely optimal, includ-
ing for tasks where the human teacher generates training data [8].
Conversely, we found that querying the least separable gesture class
led to slower training despite a larger overall increase in accuracy.
Previous works partially corroborate our results. Research showed
that both instructional guidance [6, 8] and sharing initiative with an
active learner [5] yield better accuracy than self-directed teaching.
However, the same authors showed that teaching an active learner,
even with partial initiative, is faster than self-directed teaching, i.e.,
active learners converge towards the maximal accuracy with fewer
examples. The fact that our results do not align with Cakmak et
al. [5] can be interpreted in the following way. First, the authors
employed simplistic machine-teaching tasks using a finite concept
space. Our work expands these results to a real-world problem with
a complex and infinite concept space, and 8 output classes. Second,
the implicit and proprioceptive nature of muscular contractions
suggests different pathways, distinct from visual cues, to adapt
to the machine learner. Third, unlike previous work, our study
does not employ an active learner that queries labels but rather
demonstrations. Such a scenario affords greater human control and
engagement than label queries, and our results demonstrate its
potential to support ML-based prosthesis control.

Teacher-led strategy resp. Learner-led strategy yield faster resp.
greater performance increase. Looking at the problem solely from
the point of view of learner performance, a direct implication would
corroborate design guidelines outlined in previous works [5, 38],
i.e., to share initiative at relevant moments of training. In our case,
an optimal approach would be to let users direct the early stages
of the training, and transition to the gesture-separability active
learning later on. Alternatively, Powell et al. [31] highlighted the
importance of coaching to incrementally incorporate gestures in a
subject’s training session based on the subject’s capacity to create
more separable EMG patterns. Looking at human-centered aspects,
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Dakpa et al. [11] showed that faster improvement of a classifier’s
performance can motivate users to pursue the training, hence lean-
ing toward the use of teacher-led training in our use case. That
being said, there is the risk that the averaged performance gaps
obtained in section 4.1 might not be perceivable by a human teacher.
Furthermore, it is likely that such results change with a different
machine learner [29], or sensor device. Instead of scrutinizing av-
eraged curricula performances, a promising research follow-up
would be to investigate outliers, i.e., participants’ curricula that
led to extreme performances—either good or bad, compared to
others. Second, we argue that human-oriented assessments, e.g.,
focused on engagement and comprehension, are more important
than model performances to involve users in the role of teacher.
A valuable avenue for research would be to explore methods for
users to effectively retrain their ML-based prosthesis during daily
life activities.

5.2 Impact of training strategy on (human) skill
acquisition

The gesture separability measure is used to assess the consistency
of the demonstrations, i.e., to what extent gesture examples in the
same class are close to each other, but far from examples in other
classes. All conditions showed a trend towards higher separability
across phases, with a larger increase from start to end when the least
separable gesture is queried. Practice and repetition are necessary to
build consistency in any motor movement [28, 32]. The first finding
might indicate that participants learned how to perform gestures
more consistently throughout the training session, i.e., participants
improved their motor skills in the execution of gestures. In our case,
the learner-led condition favored repetition between gestures of
identical classes, suggesting that participants improved their motor
skills better in this condition.

Conversely, increasing the variability of practice has been shown
to improve the acquisition of motor skills [3]. This means that it
is preferable to switch from one task to another rather than re-
peat the same task until it has been learned. This improvement in
learning has been demonstrated in terms of retention and transfer.
In particular, it has been shown that creating motor interference
by switching task from one trial (or block of trials) to another de-
creases the rate of motor learning but increases retention [41]. An
analogous observation in our case is that the randomized training
curriculum prevented gesture class repetition by design. It is also
likely that the teacher-led condition involved fewer repetitions than
the learner-led strategy. Hence, investigating the learning effect,
measured by gesture consistency, during the retention phase (typi-
cally after several days) presents a significant research opportunity.
The insights gained could profoundly influence the application of
such training protocols in real-world scenarios.

5.3 Users’ understanding of gesture
classification for prosthesis control

Our study uniquely investigated users’ mental model of an ML-

based myoelectric prosthesis. An accurate functional mental model,

i.e., users’ comprehension of the model’s behavior—its strengths
and weaknesses—can help users adapt their muscular contractions
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and avoid errors in real-life scenarios. Our evaluation method com-
bines assessment of 1) users’ predictive ability to execute gesture
examples which will positively and negatively be classified, with 2)
users’ self-reported perception of the system’s accuracy, i.e., ques-
tionnaire answers about their perceived accuracy of each gesture
class. Both methods indicate the benefit of the learned-led strategy
(based on gesture separability) on participants’ mental model. On
one hand, participants’ ability to reproduce correctly identified
examples is significantly higher in both the learner-led and the ran-
dom condition than in the case where participants decided which
gesture to train. No differences in demonstrating negative examples
were found between conditions. On the other hand, users’ percep-
tion of the system’s accuracy was more accurate in the learner-led
condition than in the teacher-led condition.

Two explanations can support these findings. First, the learner-
led condition creates a curriculum that focuses on ambiguous
classes, hence developing users’ understanding of the most unsta-
ble gesture classes throughout training. A greater comprehension
of borderline examples might translate to higher performance in
guessing positive examples. This explanation corroborates with
Cakmak et al. [5], who found that human teachers had a more
accurate performance estimate of the learner in active learning
modes, including human-controlled active learning, rather than
self-directed teaching. The second explanation links with our pre-
vious results on the model’s final accuracy: model behavior of an
accurate model is easier to understand. Such an explanation would
align with other empirical findings [17, 39] presented in the related-
work section 2.3.

5.4 Limitations

Our study yielded one unexpected result: during the mental model
assessment phase, participants were more able to produce negative
than positive examples. This finding contradicts the verbalizations
reported in section 4.2.1, where participants described demonstrat-
ing negative examples as more challenging. Participants’ verbaliza-
tions also suggest that they approached positive examples differ-
ently than in earlier phases. Challenges in creating negative exam-
ples are reported in prior research [8]. This observation may be due
to an experimental design artifact in the mental model assessment
session. The think-aloud protocol, which required participants to
demonstrate gestures while explaining their decisions aloud, might
have imposed a higher cognitive load, resulting in changes in the
execution of positive examples.

Asking participants to perform positive and negative examples is
not a standard approach to assess participants’ mental model, more
precisely, their predictive abilities about the model’s behavior. To
assess participants’ predictive accuracy, Sanchez et al. [39] sampled
input data to be shown to participants, who had to guess if their
model would correctly or incorrectly recognize the selected input.
They also introduced an exploration phase after the teaching ses-
sion in order for participants to familiarize with the final model’s
behavior. Cheng et al. [9] introduced variants of tests that assess par-
ticipants’ predictive ability about the model. These variants, called
unnamed attributes, alternative prediction, and decision prediction,
are also based on actual data points and suggested modifications.
Querying positive and negative labels to participants from actual
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input data, as well as the variants introduced in Cheng et al. [9],
are not feasible in the context of myoelectric prosthesis control as
there is no way to cue a muscular contraction pattern: a signal visu-
alization would not evocative. Furthermore, adding an exploration
phase would have lengthened our experiment, potentially leading
to participant fatigue, where prolonged engagement can reduce
performance and increase errors due to mental exhaustion.
Finally, we assessed the participants on the basis of a signal
which was the average EMG signal over two seconds of data collec-
tion. In doing so, we discarded the gestural strategies used by the
participants to arrive at the final postures. Keeping the raw EMG
signals would have allowed us to extend our assessment of users’
ability to control a prosthesis by inspecting the extent to which
they could achieve a given gesture. In particular, it would be inter-
esting to examine the model predictions temporally during these
two seconds of gesture stabilisation. Taking into account all the
classification decisions made from the beginning to the end of the
two seconds would have made it possible to measure the regularity
with which a user was able to maintain the desired position once it
had been reached and to devise more refined guidance strategies.

6 CONCLUSION

Modern myoelectric prostheses equipped with machine learning
aim to provide a more personalized control than conventional
methods. With ML-based prostheses, users become responsible
for “teaching" the system with examples, i.e., demonstrating asso-
ciations between their muscular contractions and the prosthesis’
gestural response. In this article, we investigated model training
strategies and tested their impact on the machine learner’s perfor-
mance and the human teacher’s (i.e., the user’s) comprehension
of the system’s behavior. Our lab experiment investigated three
model training strategies: (1) the system cues gesture classes ran-
domly (control), (2) the user selects gesture classes (teacher-led),
(3) the system queries gesture classes based on their separability
(learner-led).

Our findings indicate that both learner-led and teacher-led strate-
gies have their merits, each contributing to important aspects of
model and user training. The teacher-led strategy led to faster
model accuracy increases early in the training. The learner-led
strategy resulted in larger increase in model accuracy, more con-
sistent gestures, and more accurate mental models of users. These
results highlight the potential of these teaching strategies in the
context of prosthesis control, and suggest the benefit of demon-
stration queries to organize the curriculum, thus fostering accurate
models and users’ mental model. We discuss our results in the light
of several bodies of research, namely myoelectric control, motor
learning, human-robot interaction, and interactive machine teach-
ing. Promising research directions include the design of training
strategies with shared-initiative, experiments in ecological settings,
as well as a thorough evaluation of users’ engagement.
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7 APPENDIX
7.1 Interface for the Learner -Led and Teacher -Led conditions

Familiarization ~ Phase1 Phase2 Phase3 Phase4 {§}

Gesture

Palm Up

Get Gesture

Captured 17 instances.

(a) Interface for the Learner-Led condition. Clicking on the ’Get Gesture’ button queries the next gesture.

Familiarization ~ Phase1 Phase2 Phase3 Phase 4 i

= @@O®EE

Captured 17 instances.

(b) Screenshot of interface for the Teacher-Led Condition. It consists of 8 gesture icons and a ’Capture’ button.
Participants select gestures by clicking on icon buttons. The button border turns red to indicate that a gesture has
been selected.

Figure 8

7.2 Post-Training Questionnaire

According to your experience, after having taught the system to recognize the 8 gestures, how accurately will the system recognize each
one? (0% - the system never recognizes the gesture to 100% - the system always recognizes the gesture)
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Palm Up

Palm Down

Close Hand

Open Hand

Close Pinch

Open Pinch

Point Index

Rest Hand

Figure 9: Questionnaire
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