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ABSTRACT
Pattern-recognition-based arm prostheses rely on recognizing mus-

cle activation to trigger movements. The effectiveness of this ap-

proach depends not only on the performance of the machine learner

but also on the user’s understanding of its recognition capabilities,

allowing them to adapt and work around recognition failures. We

investigate how different model training strategies to select gesture

classes and record respective muscle contractions impact model

accuracy and user comprehension. We report on a lab experiment

where participants performed hand gestures to train a classifier

under three conditions: (1) the system cues gesture classes ran-

domly (control), (2) the user selects gesture classes (teacher-led),

(3) the system queries gesture classes based on their separability

(learner-led). After training, we compare the models’ accuracy and

test participants’ predictive understanding of the prosthesis’ behav-

ior. We found that teacher-led and learner-led strategies yield faster

and greater performance increases, respectively. Combining two

evaluation methods, we found that participants developed a more

accurate mental model when the system queried the least separable

gesture class (learner-led). Our results conclude that, in the context

of machine learning-based myoelectric prosthesis control, guiding

the user to focus on class separability during training can improve

recognition performances and support users’ mental models about

the system’s behavior. We discuss our results in light of several

research fields : myoelectric prosthesis control, motor learning,

human-robot interaction, and interactive machine teaching.

CCS CONCEPTS
•Human-centered computing→Empirical studies inHCI; Ac-
cessibility technologies; • Computing methodologies→ Learn-
ing from demonstrations.
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1 INTRODUCTION
Learning to control amyoelectric prosthesis is challenging and influ-

enced by physiological differences, thus requiring tailored training

for users. These prostheses capture users’ intentions by mapping

electromyographic (EMG) signals from muscular activations to cat-

egories associated with prosthesis output gestures. Myoelectric

prostheses can use supervised machine learning (ML) algorithms

to learn associations between EMG signal patterns and prosthesis

gestures. With such devices, users can curate new examples for the

prosthesis to update its mapping between muscular contractions

and gestures.

However, pattern recognition-based prosthesis control has not

been widely used in rehabilitation and commercial devices because

strategies for user-mediated model training remain unclear, and

therefore classification accuracy remains low in ecological settings.

EMG signals can also change due to muscle tiredness or stump

posture. As a result, user control deteriorates in ways that remain

to be fully understood [15], and the classifier must be retrained to

account for these changes.

Increasing our understanding of which model training strategies

yield better performance and better system comprehension might

fill the gap between in-lab and real-life performances for prosthesis

control [15]. Previous works have addressed different strategies to

train users to control their prostheses. It has been shown that train-

ing the user to provide more consistent and distinguishable muscle

contraction patterns improves classification accuracy [16, 31]. Fur-

thermore, research showed that real-time visual guidance improves

the quality of EMG data [12, 13, 32]. Training the user to perform

muscular contractions and train an ML model simultaneously can

be seen as an HCI problem, where a co-adaptation occurs between
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the user and the classificationmodel. This has been investigated par-

ticularly in the domains of Interactive Machine Learning (IML) [1]

and Interactive Machine Teaching (IMT) [35]. The IML approach,

at the intersection of HCI and Machine Learning, aims to include

end-users, including non-ML expert stakeholders, in the develop-

ment of ML models through dataset curation, model steering, or

the choice of performance metrics. Interactive Machine Teaching

specifically focuses on the inherent ability of humans to teach, i.e.,

to take the perspective of a learner and curate relevant training ex-

amples to address its weaknesses. IMT research calls for the design

of interactions that leverage these human abilities, including the

ability of users to develop an accurate mental model of the machine

learner being taught [17, 38].

This paper aims to study different teaching strategies of ML-

based myoelectric prostheses, with different degrees of freedom

to organize the training sequence. We want to understand how

certain factors affecting the gesture examples provided by users for

training the ML-based prosthesis impact the system’s performance

and the user’s understanding of the system’s behaviour. In particu-

lar, this research aims to answer the following research question:

How does the teaching strategy affect recognition accuracy and user’s
understanding of an ML-based prosthesis when the training strategy
is either random, directed by the user, or directed by the learner ac-
cording to an optimisation criterion? Two assumptions guide this

research question:

Assumption 1. Allowing the user to take an active role

(“teacher”) by structuring their training session can help them test

and improve their understanding of the system. This assumption

is guided by a) the learning by design (LBD) approach [18], which

argues that being engaged in the process of design enhances skill

acquisition, and b) the interactive machine teaching approach [35],

suggesting that users engaged in the role of a machine “teacher”,

rather than annotator, develop investigative and self-reflecting be-

haviors [37]. This is a teacher-led approach.

Assumption 2. Guiding users to select gesture classes that max-

imize the separability of the gesture classes might lead to better

model accuracy. This assumption is led by the fact that in the context

of prosthesis control, increasing the separability of EMG patterns

in the feature space of the classifier is conceptually linked to higher

accuracy [12]. Since the machine learner queries the human teacher,

this is a learner-led approach.

To answer this research question, and test our assumptions, we

conducted a controlled experiment investigating the effects of dif-

ferent training strategies on recognition accuracy and user’s under-

standing of the recognition process. During training, gesture classes,

i.e., the target movements to be triggered by the prosthesis are se-

lected sequentially according to three conditions: either at random

(control condition), by the participants themselves, or by a gesture-

separability algorithm. Then, participants must demonstrate the

corresponding muscular contraction to create a training set and

update the recognition model. They visualised a prosthetic hand

performing the recognised gesture as feedback. Our contributions

are twofold: 1) We empirically identified model training conditions

that leverage recognition accuracy and user understanding of an

ML-based myoelectric prosthesis, and 2) we provide directions for

research and for the design of training sessions that could support

users of myoelectric prostheses.

2 RELATEDWORK
We first present how training has been designed for ML-based pros-

thesis control and then report findings from the Machine Teaching

literature, which shed light on how humans teach concepts to ma-

chine learners.

2.1 User training for ML-based prosthesis
control

2.1.1 User training strategies. The importance of user-training in

the ecological context of prosthesis control through pattern recog-

nition of muscle activity was first highlighted by Powell et al. [31].

In a ten-day experiment, they showed that amputees improved their

control performancewith the help of visual feedback, which showed

the movement of a virtual prosthesis. Subjects were coached by the

experimenter to produce more separable and consistent gestures.

However, another study with able-bodied subjects [21] showed

that subjects can improve with training alone, independently of

feedback or with coaching during training. More recently, research

has shown that feedback in the form of visualization of EMG data

points in a Linear Discriminant Analysis classifier’s (LDA) feature

space can accelerate user-training [12, 13]. De Montivalet et al. [12]

showed that using a continuous feedback based on the separability

index of class means improved the accuracy of the retrained class

without affecting overall accuracy. When compared to using the

labels of the classifier as feedback, this effect was larger.

Since training alone can help humans provide better EMG pat-

terns, it remains to be seen whether other training parameters can

lead to further improvements. Only a few studies [2, 44] explored

the effects of training curricula in a prosthesis context. However,

this remains to be explored for ML-based prostheses. These studies

applied principles derived from motor learning research [25, 33, 41]

to determine effective training methods. For example, Bouwsema et

al. [2] studied the order of practice tasks (based on functional uses

of prosthesis) and their effect on movement time with a myoelectric

simulator. Their findings suggest that performance in daily life is

independent of training structure, but a blocked practice leads to

faster learning than a random practice.

2.1.2 User training phases. Many training paradigms described in

the literature involve iterating over one or several of the following

phases: data collection, user training and testing [12, 20, 22, 31].

The data related to a gesture example is labelled automatically

when a gesture is cued, and the procedure involves retraining the

classifier on new data. This is sometimes called Supervised Recal-

ibration. For example, De Montivalet et al. [12] retrain a specific

gesture class after collecting data from all gesture classes. Users

only get a chance to test the classifier at the testing phase, after a

data collection phase to train the gesture classifier, and thus the

user can only make adjustments to the classifier in the next training

phase. This restrains human learning [4]. To address this problem,

Fang et al. [13] adopt incremental training and users are provided

with classifier feedback at each training trial. Nishikawa et al. [28]

tackle this problem through an online learning mechanism. The

user provides teaching signals when the virtual hand is moving

unsatisfactorily, to generate new data. Undesirable data is elimi-

nated based on different metrics. They show that this learning and
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data elimination mechanism simplifies decision boundaries. In both

studies, gesture classes are cued randomly. Finally, Szymaniak et

al. [42] diverge from this 3-phase training protocol by proposing

an active learning framework to address the cost of data labelling.

Assuming that a dataset of EMG data can be collected prior to train-

ing, they simulate different sampling strategies and conclude that

active learning surpasses random sampling.

The research in ML-based myoelectric control sought different

ways to impart basic concepts of Machine Learning control to

users during training, so that they can retrain their classifiers more

efficiently. To understand how users can better steer model training

in the desired way, we now look at how humans have taken the

role of teachers to teach a machine.

2.2 Guiding humans to teach machines
Research in interactive machine learning (IML) and human-robot in-

teraction (HRI) investigated how guidance can help human teachers

convey concepts to a machine learner. Teaching guidance mainly

takes two forms: delegation of initiative and instructions. Delegation
of initiative mainly explored active learning (AL), i.e., the possi-

bility for the machine learner to be curious and query novel and

informative examples [40]. Cakmak et al. [5] investigated how hu-

mans teach a learning robot in a finite concept space (conjunction

of nominal features). Their study compared self-directed teaching

(no learner’s query) with three active learning variants: full AL,

mixed-initiative AL, or human-controlled AL. They found that ac-

tive learning conditions, including human-controlled AL, resulted

in significantly higher F1 scores than self-directed teaching. In

another study, Cakmak et al. [8] explored instructional teaching

guidance across more complex and realistic tasks, including binary

classification of sketches: participants were primed with different

heuristics, e.g. an efficient teaching strategy must sample examples

close to the decision boundary. Their results found that instruc-

tional guidance influenced human teaching toward being more

beneficial for the machine learner’s accuracy. The authors pointed

out participants’ tendency to provide typical rather than borderline

examples when unguided, to be more successful at curating positive

rather than negative examples, and to forget what examples were

already shown to the system. Several authors [8, 10, 37] concur

about the complex entanglement between the interaction workflow,

concept space (complexity of the concept), the learning algorithm,

and the data domain. A large benchmark conducted by Pereira et al.

[29] concerning Active Learners revealed that performance gains

are uneven across models, domains, and to a lesser extent, sampling

strategies. Preliminary findings by Sanchez et al. [37] comparing

simulated active learning with real human teaching curricula in a

multi-class recognition of images with a deep learning model also

contradict Cakmak et al. [5], as self-directed human teachers seem

to outperform simulated active learners.

Our work contributes to uncover the complex interaction be-

tween human teacher and machine learner by studying a real-world

problem with infinite concept spaces and little-studied domains: the

multi-class recognition of EMG signals. The proprioceptive nature

of muscular contraction makes it challenging to design similar ex-

periments to those in the visual domain. Active learning scenarios

in which the learner queries output labels from input trajectories

are not feasible, as EMG signals are hard to represent and too dis-

tinctive. Instead, our work investigates demo queries [7], i.e., the

active learner chooses a class and queries a teacher’s demonstration.

Demo queries, also called active class selection [26], afford greater

human control than label queries as users can still induce variations

in the input data points.

2.3 Humans’ mental models in interactive ML
The research literature involving a human teacher and a machine

learner focuses primarily on model performance. However, an es-

sential aspect in ML-based myoelectric control is users’ compre-

hension of the model, also referred to as the user’s mental model.

Mental models about a machine learner can be functional—the
comprehension of the model’s learning or final behavior— and

structural—the understanding of the machine learner’s underly-

ing mechanisms (e.g., neural network, k-NN, etc.). In our case, we

are interested in assessing participants’ functional mental model,

since the comprehension of the learner’s behavior—its strengths

and weaknesses—can help users adapt their muscular contractions

and avoid errors in real-life scenarios.

The approaches employed to assess users’ mental model of anML

system in the interactiveML literature often triangulate quantitative

(objective understanding) and qualitative (self-reported understand-

ing), including: 1) assessments of users’ predictive accuracy (quan-

titative, objective), i.e., users’ ability to predict the system’s pre-

dictions [9, 39]; 2) verbalization analysis (qualitative, self-reported)

from interviews [24, 39], think-aloud protocols [38, 39], or written

responses to open-ended questions; 3) analysis of response from

close-ended questions (qualitative, self-reported) during post-hoc

surveys [5, 17, 19, 23, 24]. The research studies cited span the fields

of interactive ML, human-robot interaction, and explainable AI and

offer valuable insights for our work.

On the influence of learner’s performance on users’ compre-

hension, Hedlund et al. [17] found that the machine learner’s (a

reinforcement algorithm) performance can affect a teacher’s men-

tal model about the learner (capacity, reliability) and their own

teaching capacity. Sanchez et al. [39] investigated how people use

and understand two types of uncertainty feedback while teaching

an image classifier. Although neither epistemic nor aleatoric un-

certainty feedback improved users’ predictive accuracy compared

to each other, they also found a strong correlation between users’

predictive accuracy (e.g., objective understanding) and the machine

learner’s final accuracy. This confirms the intuition that accurate

models are easier to comprehend than inaccurate ones.

On the influence of curriculum on users’ comprehension, Cak-

mak et al. [5] also conducted subjective ratings from a post-hoc

survey, which revealed that people had a better mental model of the

system’s performance in the 3 active learning (AL) conditions rather

than self-directed teaching. Participants, however, reported less en-

gagement in the full AL condition. Using a think-aloud protocol,

Sanchez et al. [38] explored humans’ understandingwhen incremen-

tally teaching a deep neural network to recognize sketches. Their

results underscore the importance of the training sequence, both

for the classifier performance and user understanding of the model

behavior. In particular, curating examples which are imbalanced

across classes at the beginning of the teaching was detrimental
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to learners’ performances and users’ comprehension. Researchers

[5, 38, 43] converge on the usefulness of guidance prior or early

in the teaching phase. Letting users interact with data trigger in-

vestigative behaviors [38] but requires engagement and time [9],

suggesting a trade-off between efficiency and understanding.

Our work also combines methods to assess users’ functional

mental model: we investigate both objective (users’ predictive abil-

ities) and self-reported understanding (think-aloud protocol and

survey). Our results might shed light on the relationship between

the training curriculum and users’ functional mental model in the

specific use case of ML-based myoelectric prosthesis control. This

use case is unique compared to the rest of the literature presented

above, as it involves complex signals that results from users’ implicit

knowledge and fine-grained proprioception.

3 USER STUDY
We want to evaluate participants’ ability to build accurate classifi-

cation models of muscle activity based on different user-training

strategies, and to investigate to what extent they foster the devel-

opment of accurate mental models of the trained classifiers. We

compare three model-training conditions under which participants

incrementally train the gesture classifier: (1) Random-Condition

(RC), which cued gesture classes randomly; (2) Teacher-led Con-

dition (TLC), in which the user could choose the gesture classes

for which to give examples; and (3) Learner-led Condition (LLC),

which cued gesture classes based on their separability in the feature

space. To assess the effects of the training condition on participants’

functional mental models, we combined objective and self-reported

insights. In this section, we provide the details of the experimental

protocol.

3.1 Participants
51 people participated in this study (25 males,25 females, and 1 non-

binary, aged between 18 and 36, M = 24.8, SD = 4.2). We recruited

able-bodied participants to ensure comparable prior knowledge

and sensorimotor expertise with myoelectric control technology.

They were required to have no neurological or upper-extremity

musculoskeletal problems that might influence performance. They

received 15 euros as compensation. Participants’ experience in

Machine Learning and Robotics in Healthcare varied from novice

(no knowledge) to advanced (experienced in Machine Learning

/ Robotics in Healthcare) (see table 1). The University’s Ethical

Research Committee approved all experimental procedures.

3.2 Task
We asked participants to teach the best possible recognition system

for the following 8 gestures: (1) Palm Down, (2) Palm Up (3) Close

Hand (4) Open Hand, (5) Close Pinch, (6) Open Pinch, (7) Rest Hand,

(8) Point Index. These eight gestures are depicted as pictograms in

Figure 1 and were specifically chosen because they are common

actions to be performed by upper-limb amputated users fitted with

current commercial myoelectric prostheses. They define the typical

gesture set used in studies in rehabilitation engineering focusing

on myoelectric prosthesis [12].

Training the best gesture recognition system implies that par-

ticipants must consistently produce precise muscle contractions

Figure 1: The ML-based myoelectric prosthesis had to learn a
set of gestures from examples provided by participants. We
considered 8 gestures, from left to right: Palm Down, Palm
Up, Close Hand, Open Hand, Close Pinch, Open Pinch, Rest
Hand, and Point Index.

for the eight gesture categories, ensuring that the resulting model

achieves minimal recognition errors. We implement an incremen-

tal training protocol, where the model is retrained for each new

example demonstrated by participants.

As further detailed below, the interface shows gesture icons that

indicate to the participants which gesture to perform now. The icon

represents the gesture class used as a ground truth label (see Figure

1).

3.3 Apparatus and Setup
The experiment consists of four components: a muscle contraction

sensor, a web-based interface, a Python-based software module, and

a prosthetic arm. Figure 8a illustrates the setup with the various

components we explain in this section. The surface myoelectric

activity of the forearm is measured with a dedicated device, a Myo

armband from Thalmic Labs. The Myo armband comprises 8 chan-

nels to record electro-physiological signals with an 8-bit resolution.

No specific skin preparation was used before placing the armband

on the participant’s forearm, approximately 5 centimeters from the

elbow joint.

EMG data are sent to the Python-based software module. Fea-

tures are extracted from the Root Mean Square (RMS) of the

raw EMG signal. It was computed from the surface EMG (sEMG)

over a 128-ms-sliding analysis window, with a 32-ms overlap be-

tween successive windows. The dataset is available on Zenodo:

https://doi.org/10.5281/zenodo.10528482. Among the wide variety

of features that have been investigated in the literature [30], RMS

features are known to be the most efficient and robust processing

for classification of sEMG with LDA. In addition, they are standard

features in the literature on myoelectric prosthesis arms, allowing

the community to compare our results with other research such as

Roche et al. [36] or De Montalivet et al. [12]. We recorded about

2 seconds of data and averaged the features to obtain a vector of

8 RMS values for the 8 channels of the Myo Armband. For classi-

fication, we used a Linear Discriminant Analysis (LDA) classifier

(taken from the Scikit-learn python library
1
). We chose the LDA

since it is the most used algorithm in an ecological setting to clas-

sify EMG signals [12, 45]. In addition, LDA, compared to more

recent approaches with neural networks [27, 34], allows for fast

training updates of the model, enabling incremental training. The

Python-based software module sends classification predictions to

the web-based interface through a web socket. The Python-based

software module also sends the classification prediction to the pros-

thetic arm throughWiFi to provide feedback on model performance

to the participant.

1
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
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Knowledge in Healthcare Robotics Knowledge in Machine Learning

(Expert) 0 0

1 3

↓ 3 7

14 12

(No knowledge) 33 29

Table 1: Number of participants having knowledge in (1) Robotics and (2) Machine Learning. Ratings were provided on a likert
scale of 0 (expert) to 5(no knowledge).

The web-based interface was created using the Marcelle toolkit
2
,

a modular open-source toolkit for programming interactive ma-

chine learning applications. The interface shows the icons described

above, and a capture button used by participants to record muscle

contraction associated with gesture classes. Participants are told to

hold the gesture and click on the ’Capture’ button, which records

EMG data for approximately 2 seconds.

To provide motion feedback, a TASKA, NZ prosthetic hand
3

along with a conventional electric wrist rotator is used. The pros-

thetic hand was programmed to enact the 8 gesture classes.

The training pipeline is as follows: a gesture class is selected (by

the system or the participant, depending on the condition), and

the participant provides an example of that gesture class through

muscle contractions. After data windowing, the RMS is computed

from the acquired EMG data. This feature is then used for classifi-

cation with LDA. The predicted class is sent to the prosthetic hand

to trigger the appropriate motor command.

3.4 Conditions and experimental design
We used a between-participant experimental design, where we

compared three conditions, each with different ways of selecting

gestures for training.

• random condition (RC): at each trial during training, the

system queries a gesture to be executed by the participant.

This gesture is picked pseudo-randomly by shuffling the set

of 8 gesture classes. Consequently, the number of gestures

executed by a participant is balanced among gesture classes.

There is no consecutive repetition of a gesture class, i.e.,

gesture classes always change from one trial to another.

• teacher-led condition (TLC): at each trial during train-

ing, the participant selects the gesture class for which they

wish to produce an example. The number of gestures per

class executed by a participant depends on the sequence cre-

ated, which can lead to an imbalanced dataset across classes.

Participants (i.e. teachers) can also choose to provide several

consecutive examples for a gesture class.

• learner-led condition (LLC): the system (i.e. the learner)

sorts gesture classes based on a separability index and queries

the least separable gesture class at each trial during training.

We compute the gesture class separability index as a ratio

of the inter-class variance to the intra-class variance com-

puted on the captured data (EMG features; see more details

below). The intra-class variance for a class 𝑐 is computed

2
https://marcelle.dev [14]

3
https://www.taskaprosthetics.com/

as the mean-variance of EMG data within 𝑐 . The inter-class

variance is computed as the mean of the variance of EMG

data from class 𝑐 and every other class 𝑐′ different from 𝑐 . A

pilot study showed that, in practice, this strategy can create

a highly imbalanced dataset depending on the initial data

points. Therefore, to mitigate the curation of imbalanced

training datasets, the gesture separability index is weighted

by the inverse number of instances for this gesture (see Al-

gorithm 1).

Algorithm 1: Gesture Class Separability Index

Input: A training dataset: (𝑋train, 𝑦train)

Output: Per-class separability index: 𝑆𝐼

for c in 𝑁𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
𝑆𝐼 (𝑐) ← 𝑉𝑎𝑟inter-class (𝑐 )

𝑉𝑎𝑟intra-class (𝑐 ) ;

𝑆𝐼 (𝑐) ← 𝑆𝐼 (𝑐) ∗ 𝐶𝑙𝑎𝑠𝑠𝑆𝑖𝑧𝑒 (𝑐 )∑𝑁𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠
𝑛=1 𝐶𝑙𝑎𝑠𝑠𝑆𝑖𝑧𝑒 (𝑛)

;

end

Two of the conditions, namely teacher-led and learner-led, can

lead to training datasets which are not balanced. A common assump-

tion in supervised machine learning is that training data points are

independent and identically distributed (i.d.d) regarding the prob-

lem under scrutiny. This assumption is rarely met in simulated or

human teaching, as well-explained in Zhu et al. [46]. Teaching sets

are often non-independent and identically distributed (non-i.i.d.)

as they might be designed, for instance, to mitigate the inherent

ambiguity between two classes. For this reason, we do not enforce

balanced training sets in the teacher-led and learner-led conditions

in our experiment. Strictly forcing an equal number of instances

per class, besides the random condition, might undermine a crucial

characteristic of teaching: planning and learner adaptivity.

3.5 Procedure
We welcomed participants and explained the task, the different

phases, and the interface. Participants were fitted with a Myo arm-

band. They were asked to place the elbow of the dominant arm on

a ball of wool for comfort and to maintain this position throughout

the experiment. To familiarize participants with the gestures, they

were shown icons of each gesture and an image showing the corre-

sponding gesture. Participants in all groups performed four phases

(the procedure is also depicted in Figure 3).

(1) Initialization. This phase aims to provide an initial dataset

to train the gesture classification model before starting the
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Gesture cue

Gesture execution EMG data

Feature 
extraction

Gesture 
commands

Motion feedback

Instructions
Interface

Training SetLDA

Python module

Web module

Gesture-class 
sampling

Figure 2: Experiment setup: The participant wears the Myo armband on the forearm and performs a gesture. A screen in front
of the participant displays the interface for capturing data. The interface for the random condition (RC) is shown here. The
interfaces for the other conditions can be found in the appendix (see section 7.1). On the left, a prosthetic forearm (composed
of a wrist rotator and a prosthetic hand) provides feedback during the training phase.

Figure 3: The 5-phase experimental design. It involved a between-subject comparison of three conditions. Participants received
feedback only during the training phase.

training phase. Participants are asked to record two gesture

examples per class (16 trials in total). Each gesture query is

picked according to a pseudo-random strategy. There is no

repetition of gestures.

(2) Training. During the training phase, participants are asked

to give an example of a gesture (RC and LLC) or to choose

a gesture for which to provide an example (TLC). Partici-

pants are briefed about the conditions: in the teacher-led

condition (TLC), they are told to choose which gesture they

want to train, and in the random condition (RC), they are

told that the gesture classes are proposed in a random order.

Finally, in the learner-led condition (LLC), participants are

told that the most inconsistent gesture classes are prompted.

In the RC and LLC conditions, gestures are presented as

icons, and in the TLC condition, participants select gesture

classes by clicking on the corresponding button illustrated

by the icon. After each example, the classifier is trained on
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the entire dataset collected until this point, and the partic-

ipant receives gesture feedback from the prosthetic hand.

For instance, if a participant performs the “close hand” ges-

ture, and if the classifier correctly recognizes this example as

“close hand”, the prosthetic hand closes. Participants are told

to pay attention to the feedback, which could be leveraged to

reflect on future gestures. This phase includes 104 trials. The

number of trials was decided based on a pilot study, which

showed that the learning curve of the classification model

plateaued after around 100 trials. In total, the aggregation of

the examples from both the initialization and training phases

leads to 120 gesture examples in the training set.

(3) Post-test. To assess the model’s final accuracy after training,

the participant completes a post-test. This post-test served

as a data collection phase, comprising 48 trials to create a

test set of 6 trials per gesture class. This phase was similar

to the initialization phase in that the gestures were collected

randomly and without any feedback.

(4) Positives-Negatives. To assess participants’ mental model

of the system, they were asked to complete a task that in-

volved providing gestures while explaining their reasoning.

In this task, participants were prompted to give three gesture

examples that would be correctly recognized, called positives,
and three examples that would incorrectly be recognized,

called negatives. They were told that they could give different
examples or repeat their examples. The examples could be

drawn from observation during training or from their own

understanding and interpretation. Participants were asked

to verbalize (think aloud) their strategies to produce positive

and negative examples. Therefore, this phase comprised 48

trials. Each participant, across conditions, experienced the

same gesture order. The 3 positives were queried in a row,

followed by the 3 negatives.

(5) Questionnaire. Finally, participants were asked to answer

a questionnaire where they rated the perceived accuracy of

gestures of the trained model. Perceived accuracy is mea-

sured on a scale of 0 to 100, where 0 means never correctly

recognized and 100 means always correctly recognized.

3.6 Data Collection and analysis
We logged each example recorded by participants and the classifier

trained by users after each trial to compute the model accuracy

along trials. During the ’Positives-Negatives’ phase, we collected

additional EMG data and participants’ verbalizations with audio

recordings. Finally, we collected answers to the post-study ques-

tionnaire (cf. Appendix 7.2) to assess the participant’s mental model.

Based on these collected data, we computed the following measures:

Model Accuracy. We compute the model accuracy by selecting

a trained model at a given trial, from trial 16 (after initialization) to

trial 120 (at the end of training), and use data collected during the

post-test phase as test set. The test set is balanced and contains 6

instances of each gesture. Thus, using Sklearn’s API, we compute

the accuracy score at each trial, computed as the fraction of cor-

rectly classified samples. Accuracy is computed per gesture class to

take into account the variation between classes when calculating

statistics between conditions.

Gesture separability. To understand how the separability of the

EMG data evolves over time, we compute a measure of participants’

ability to produce consistent and separable gestures over 3 phases:

the start of training (16 gestures), end of training (120 gestures) and

the post-test set (48 gestures). In the next section, these 3 phases

will be designated as the variable Phase. Gesture separability is

computed similarly to the separability index used in condition LLC:

we compute the gesture class separability as a ratio of the inter-

class variance to the intra-class variance computed on the captured

data. This computation is done pairwise to ensure a comparable

metric between the beginning of training (where only 2 instances

per class are available) and the end of training.

True Positive and True Negative rates. To quantify differences
in participants’ understanding of two types of tasks, i.e., their ca-

pacity to identify positive and negative examples of gestures, we

calculate the true positive rate, which is the quantity of correctly

classified gestures among the set of per-class positives. We then

calculate the true negative rate for the negative examples, which

is, in our case, the quantity of incorrectly classified gestures in the

per-class negative examples. For both rates, high values mean an

accurate model for positives and, respectively, a model that handles

negatives correctly.

Participants’ perception of class accuracy. We asked partici-

pants to complete a post-study questionnaire to assess their ability

to keep track of training (cf Appendix 7). We compute the correla-

tion between the perceived accuracy for each class and the actual

accuracy provided by the model at the end of the training phase,

using data collected during the post-test set as test set.

To compare each participant’s answers in relation to all the other

participants, we transform the raw accuracy values to standard

scores (z-score).

4 RESULTS
In this section, we present the findings of the user study, start-

ing with the analysis of the performance of the models built by

participants, followed by the analysis of the mental models of the

participants after having trained their gesture classifiers.

4.1 Machine learner’s performance
In this section, we analyse the machine learner’s performance and

the extent to which the created training sets include separable

gesture classes according to the training condition.

4.1.1 Model accuracy. We first analyzed whether the initial models

built by participants (model comprising the initial 16 trials) are dif-

ferent between conditions, i.e. they result in significantly different

accuracy values if tested on the post-test data. The mean accuracies

for the initial models are as follows: 30.14 %(RC), 37.62 %(TLC)

and 30.27 %(LLC). A Shapiro-Wilk test shows that the per-class

accuracy values do not follow a normal distribution (𝑝 < 0.05).

We conducted a non-parametric Kruskal-Wallis test, which shows

no significant differences between initial models trained for each

condition (𝜒2 = 3.30, 𝑑 𝑓 = 2, 𝑝 = 0.19).

We then examined how the accuracy of the models changed

based on the training conditions. We assessed model accuracy after

each new gesture was demonstrated and added to the training set.

Since the model is updated after each new gesture, the number of
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user trials equals the size of the training set, ranging from 1 to 104.

We computed the model accuracy for each trial using post-test data

as test set. The average learning curves for each condition and the

95% confidence intervals are shown in Figure 4a.

We evaluated the final model from the training phase, which is

trained on all the examples demonstrated by users, using the post-

test data as test set. The mean model accuracies for each training

condition are as follows: 70.83% for RC, 65.81% for TLC, and 68.38%

for LLC. To verify whether these means are significantly different,

we conducted a Kruskal-Wallis test, taking accuracy as dependent

variable and Condition as independent variable. We found no

significant differences between training conditions on the per-class

model accuracy (𝜒2 = 0.74, 𝑑 𝑓 = 2, 𝑝 = 0.69). Therefore, the three

conditions lead to equivalent model performance after the training

phase.

Even though there were no statistical differences between the

mean accuracies of the model at the beginning of training, we ob-

served a variability between the initial mean values, which could

suggest a certain level of heterogeneity between groups. Therefore,

we carried out a complementary analysis in which we considered

the average delta accuracy (difference between the final and ini-

tial accuracy). Figure 4b reports the results. A Kruskal-Wallis test,

taking Delta accuracy as dependent variable and Condition

as independent variable, shows a significant difference between

conditions (𝜒2 = 19.48, 𝑑 𝑓 = 2, 𝑝 < 0.001). A posthoc analysis

with Dunn’s test showed that LLC leads to a significantly higher

improvement in accuracy compared to RC (𝑝 < 0.05) and TLC

(𝑝 < 0.001), and there is a borderline difference between RC and

TLC (𝑝 = 0.053). Consequently, although there is no difference

between model accuracy created between the conditions, the per-

formance improvement is larger when gestures are queried based

on their separability and smaller when users choose the gestures

to be trained.

Finally, we measured the learning rate to assess the evolution

of skill development during training. We fit a linear regression

model to the training set size (i.e., number of trials) and task per-

formance. The logarithm of task performance plotted against the

logarithm of the number of trials gives a straight line. To com-

pare learning rates across conditions, we conducted a one-way

ANOVA, taking Learning Rate as dependent variable and Con-

dition as independent variable (a Shapiro-Wilk normality test

shows that data are normally distributed (𝑝 = 0.62)). The ANOVA

shows a significant effect of Condition (p<0.001). A post-hoc

analysis shows that the learning rate is higher for TLC than LLC

(𝑡 = −4.655, 𝑑 𝑓 = 31.369, 𝑝 < 0.001). Furthermore, the learning rate

is higher for RC than LLC (𝑡 = 2.3891, 𝑑 𝑓 = 30.757, 𝑝 = 0.023).

• Finding 1. Performance improvements of the ML-based

myoelectric prosthesis are higher when gesture classes are

queried to optimize gesture separability than in the random

or Teacher-led curriculum.

• Finding 2. Performance improvements of the ML-based

myoelectric prosthesis are faster when the user chooses ges-

ture classes to demonstrate rather than queried to optimize

gesture-separability or at random.
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Figure 4: (a) Model accuracy evolution during training. (b)
The difference in model accuracy between the beginning and
the end of the training phase for each condition. (c) Mean
learning rates of model error reduction for each condition.

4.1.2 Gesture Class Separability. Incrementally training the ges-

ture recognition model led to datasets that may differ across condi-

tions. In this subsection, we analyze these demonstration datasets

regarding gesture class separability. High gesture class separability
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implies concentrated gesture class clusters (low intra-class vari-

ance) far from the other (high inter-class variance). This index of

gesture class separability is computed similarly to condition LLC (cf

Section 3.6). Therefore, this measure indicates the consistency of the

executed gestures, where more consistent gesture classes will lead

to higher separability. Figure 5 depicts the mean separability values

per condition at three different phases: at the beginning of the train-

ing session (after the first training trial), at the end of the training

phase (after the last training trial) and at the post-test phase. First,

we performed a Kruskal-Wallis test at each phase, considering Con-

dition as independent variable and Separability as dependent

variable. We found a significant effect of Condition only at the

end of the training (𝜒2 = 18.3, 𝑑 𝑓 = 2, 𝑝 < .001) where gesture class

separability is higher for LLC than in the other conditions. We also

inspected how the values of separability vary according to the phase.

We performed Kruskal-Wallis non-parametric tests with Phase as

an independent variable and Separability as dependent variable,

for each Condition.We found that Phase has a significant effect on

Separability for each condition (𝜒2 = 13.5, 𝑑 𝑓 = 2, 𝑝 < .01 for RC,

𝜒2 = 30.2, 𝑑 𝑓 = 2, 𝑝 < .001 for LLC and 𝜒2 = 19.9, 𝑑 𝑓 = 2, 𝑝 < .001

for TLC). For each condition, gesture class separability values are

higher at the end of training and at the post-test compared to the

separability at the beginning of training. In addition, for LLC, sepa-

rability is higher at the end of the training phase than post-test, as

shown by Dunn’s test , 𝑝 = 0.02. It shows that overall, the gesture

class separability increases, which can be related to the improve-

ment in performing gestures during training, with a higher increase

for LLC. However, at post-test, gesture class separability values are

comparable across conditions.

• Finding 3. The separability of gesture demonstrations in-

creases during training, irrespective of the condition.

• Finding 4. Increase of gesture separability is significantly

higher when gesture classes are queried to optimize gesture

separability than in the Random or Teacher-led condition.

4.2 Human teachers’ mental model
In this section, we assess the mental models of participants after

they built their gesture classifier.

We assessed participants’ mental model following two methods.

First, we assessed participants’ ability to predict where the ma-

chine learning model will make correct or incorrect predictions. We

present results regarding participants’ ability to execute correctly

classified (positives) or incorrectly classified (negatives) examples

for each gesture class. Second, we assess self-reported understand-

ing through participants’ answers to a post-training questionnaire

on their perceived accuracy for each gesture class.

4.2.1 Participants’ predictive abilities about the model. We want to

test participants’ ability to produce gestures of each class, which

will be correctly recognized by the system (positives), and ges-

tures that will not be correctly recognized (negatives). We evaluate

the true positive and true negative rates of examples collected for

both types (positive and negative), as well as participants’ inter-

pretation of these two types of examples. To compare the rates of

true positive and true negative for each class and between con-

ditions, we first conduct a Kruskal-Wallis test with True Posi-

tive Rate as dependent variable and Condition as independent

variable. This yields a significant difference between conditions

(𝜒2 = 7.31, 𝑑 𝑓 = 2, 𝑝 = 0.026). Pairwise comparisons using Dunn’s

test show that the mean true positive rate is higher for condition

LLC than condition TLC (𝑧 = 2.49, 𝑝 = 0.039, see Figure 6). There is

a borderline effect between RC and TLC (𝑧 = 2.16, 𝑝 = 0.061) and

no difference between RC and TLC (𝑧 = 0.32, 𝑝 = 0.75). A similar

test considering True Negative Rate as dependent variable and

Condition as independent variable shows no differences between

conditions for the negative examples. Finally, a Kruskal-Wallis test

considering the type of test (True Positive Rate and True Negative

Rate) as independent variable and the rate as dependent variable

shows that True Negative Rates are significantly higher than True

Positive Rates (𝜒2 = 25.26, 𝑑 𝑓 = 1, 𝑝 < 0.001). Overall, participants’

understanding of positive examples is worst for condition TLC,

while participants’ understanding of negative examples does not

differ across conditions.

During the think-aloud phase, a number of participants (P4, P8,

P19, P20, P41) explained that to create a positive, they exaggerated

the gesture. For example, while giving a positive example of the

gesture ‘Palm Down’, P41 said : “[..]rotate the hand until I hurt
myself”. Some participants considered positive examples of gestures

to be clear, slow, and precise : “high up and poised, like this” [P19],
or “I’m going to make a slow, detailed movement” [P4]. On the other

hand, negative examples were considered as fast, incomplete, and

casual: “A negative would be a bit of a jerky movement, like this.
Maybe it’s too fast for it” [P19], or “a lighter rotation” [P1].

A few participants mentioned that it was difficult to imagine

negative examples. P21 pointed out: “In general, the robot recognizes
the ‘Close Hand’ at all times, it’ll be hard to create a negative for that”.
Some participants who encountered errors during training easily

identified examples that could confuse the system. While giving a

negative example of ‘Close Hand’, P31 said: “Earlier, it interpreted
[Close Hand] as a downward rotational movement. I’m actually going
to make a tiny downward movement too”. Besides recalling training

errors, another strategy employed by participants to create negative

examples was to combine gestures. For instance, while creating a

negative example of ‘Palm Down,’ P23 said: “It’s a mixture of Close
Hand and Palm Down”, which may have contributed in deceiving

the model.

• Finding 5. Participants’ predictive abilities about the trained
model are above random. Surprisingly, participants can bet-

ter reproduce negative than positive examples.

• Finding 6. Participants’ ability to reproduce correctly iden-

tified examples is significantly lower when the user chooses

gesture classes to demonstrate rather than queried to opti-

mize gesture-separability or at random.

4.2.2 Participants’ perception of class accuracy. As a second eval-

uation of mental models, participants were required to answer a

questionnaire about their perception of howwell the system learned

to recognize each gesture. Participants’ answers about their per-

ceived accuracy of each gesture class had to be chosen among 11

discrete percentage values ranging from 0 (bad recognition) to 100

(excellent recognition). Since participants’ answers depend on their

rating style and the scale provided (e.g., a participant’s perception

of a good recognition can be 80% while another’s perception can be

100%), we transform all values to z-scores. This allows us to consider
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Figure 5: Separability of gestures along different phases: at the start of training (after the first training trial) at the end of
training (after the last training trial) and at post-test.

Figure 6: True positive and negative rates from examples provided by participants after training. Participants have a less good
mental model of what it means to produce positive examples of gestures when trained under condition TLC.

participants’ answers relative to each other. Then, we computed

a Pearson correlation coefficient to assess the linear relationship

between perceived accuracy for each gesture class at the end of

training and the actual accuracy computed on the post-test data

at the end of training. Figure 7 shows the results. The results indi-

cate a positive relationship for LLC (Pearson’s r score is 0.30, with

𝑝 < 0.001, see Figure 7c) while there is no significant correlation for

the other two conditions TLC and RC (see Figures 7a and 7b). This

suggests that condition LLC allowed participants to better keep

track of classification errors during training.

• Finding 7. Participants better perceive the ML-based myo-

electric prosthesis accuracy when gesture classes are queried

to optimize separability during training than for the Random

or Teacher-led conditions.
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Figure 7: Correlation of z-scores of actual accuracy values
(y axis) and the corresponding z-scores of participants’ per-
ceived accuracy values (x axis) for each gesture class. The
correlation is significant for condition LLC.

5 DISCUSSION
In our study, we investigated user-driven teaching strategies for

ML-based myoelectric prostheses and their influence on the ma-

chine learner’s accuracy and the human teacher’s mental model.

From the machine learner perspective, we found that the model’s

performance maximally increases when gesture classes are queried

to optimize gesture separability, outperforming both random and

teacher-led strategies. That said, we also showed that training is

faster when users select the gesture class to be demonstrated. The

three training strategies similarly led participants to increase the

separability of examples across gesture classes, with a greater in-

crease when gesture classes were queried to optimize gesture sepa-

rability. From the human teacher perspective, participants’ ability

to predict the model’s behaviors was more accurate, particularly

in reproducing negative examples over positive ones. Participants’

predictive abilities, though, diminish when they are left to select ges-

ture classes during training, a discrepancy that is not observed with

negative examples. Lastly, participants’ perception of the model

accuracy is better when gesture classes are queried to optimize sep-

arability during training. In the following subsections, we discuss

the implications of the results, which can inform the design and

further research on ML-based prosthesis control.

5.1 Influence of training strategy on model
accuracy

Several aspects of a training strategy can contribute to its efficiency.

We tested whether giving users the choice to select the gesture

class to train (teacher-led condition) results in better recognition

accuracy than imposing gesture classes to train (random condition

and learner-led condition based on a gesture separability index).

We found that the teacher-led strategy did not yield better accuracy

than the other training strategies. This is in line with findings in the

interactive machine teaching literature, where Cakmak et al. [5, 6]

showed that self-directed human teaching is rarely optimal, includ-

ing for tasks where the human teacher generates training data [8].

Conversely, we found that querying the least separable gesture class

led to slower training despite a larger overall increase in accuracy.

Previous works partially corroborate our results. Research showed

that both instructional guidance [6, 8] and sharing initiative with an

active learner [5] yield better accuracy than self-directed teaching.

However, the same authors showed that teaching an active learner,

even with partial initiative, is faster than self-directed teaching, i.e.,

active learners converge towards the maximal accuracy with fewer

examples. The fact that our results do not align with Cakmak et

al. [5] can be interpreted in the following way. First, the authors

employed simplistic machine-teaching tasks using a finite concept

space. Our work expands these results to a real-world problem with

a complex and infinite concept space, and 8 output classes. Second,

the implicit and proprioceptive nature of muscular contractions

suggests different pathways, distinct from visual cues, to adapt

to the machine learner. Third, unlike previous work, our study

does not employ an active learner that queries labels but rather

demonstrations. Such a scenario affords greater human control and

engagement than label queries, and our results demonstrate its

potential to support ML-based prosthesis control.

Teacher-led strategy resp. Learner-led strategy yield faster resp.

greater performance increase. Looking at the problem solely from

the point of view of learner performance, a direct implication would

corroborate design guidelines outlined in previous works [5, 38],

i.e., to share initiative at relevant moments of training. In our case,

an optimal approach would be to let users direct the early stages

of the training, and transition to the gesture-separability active

learning later on. Alternatively, Powell et al. [31] highlighted the

importance of coaching to incrementally incorporate gestures in a

subject’s training session based on the subject’s capacity to create

more separable EMG patterns. Looking at human-centered aspects,
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Dakpa et al. [11] showed that faster improvement of a classifier’s

performance can motivate users to pursue the training, hence lean-

ing toward the use of teacher-led training in our use case. That

being said, there is the risk that the averaged performance gaps

obtained in section 4.1 might not be perceivable by a human teacher.

Furthermore, it is likely that such results change with a different

machine learner [29], or sensor device. Instead of scrutinizing av-

eraged curricula performances, a promising research follow-up

would be to investigate outliers, i.e., participants’ curricula that

led to extreme performances—either good or bad, compared to

others. Second, we argue that human-oriented assessments, e.g.,

focused on engagement and comprehension, are more important

than model performances to involve users in the role of teacher.

A valuable avenue for research would be to explore methods for

users to effectively retrain their ML-based prosthesis during daily

life activities.

5.2 Impact of training strategy on (human) skill
acquisition

The gesture separability measure is used to assess the consistency

of the demonstrations, i.e., to what extent gesture examples in the

same class are close to each other, but far from examples in other

classes. All conditions showed a trend towards higher separability

across phases, with a larger increase from start to endwhen the least

separable gesture is queried. Practice and repetition are necessary to

build consistency in any motor movement [28, 32]. The first finding

might indicate that participants learned how to perform gestures

more consistently throughout the training session, i.e., participants

improved their motor skills in the execution of gestures. In our case,

the learner-led condition favored repetition between gestures of

identical classes, suggesting that participants improved their motor

skills better in this condition.

Conversely, increasing the variability of practice has been shown

to improve the acquisition of motor skills [3]. This means that it

is preferable to switch from one task to another rather than re-

peat the same task until it has been learned. This improvement in

learning has been demonstrated in terms of retention and transfer.

In particular, it has been shown that creating motor interference

by switching task from one trial (or block of trials) to another de-

creases the rate of motor learning but increases retention [41]. An

analogous observation in our case is that the randomized training

curriculum prevented gesture class repetition by design. It is also

likely that the teacher-led condition involved fewer repetitions than

the learner-led strategy. Hence, investigating the learning effect,

measured by gesture consistency, during the retention phase (typi-

cally after several days) presents a significant research opportunity.

The insights gained could profoundly influence the application of

such training protocols in real-world scenarios.

5.3 Users’ understanding of gesture
classification for prosthesis control

Our study uniquely investigated users’ mental model of an ML-

based myoelectric prosthesis. An accurate functional mental model,

i.e., users’ comprehension of the model’s behavior—its strengths

and weaknesses—can help users adapt their muscular contractions

and avoid errors in real-life scenarios. Our evaluation method com-

bines assessment of 1) users’ predictive ability to execute gesture

examples which will positively and negatively be classified, with 2)

users’ self-reported perception of the system’s accuracy, i.e., ques-

tionnaire answers about their perceived accuracy of each gesture

class. Both methods indicate the benefit of the learned-led strategy

(based on gesture separability) on participants’ mental model. On

one hand, participants’ ability to reproduce correctly identified

examples is significantly higher in both the learner-led and the ran-

dom condition than in the case where participants decided which

gesture to train. No differences in demonstrating negative examples

were found between conditions. On the other hand, users’ percep-

tion of the system’s accuracy was more accurate in the learner-led

condition than in the teacher-led condition.

Two explanations can support these findings. First, the learner-

led condition creates a curriculum that focuses on ambiguous

classes, hence developing users’ understanding of the most unsta-

ble gesture classes throughout training. A greater comprehension

of borderline examples might translate to higher performance in

guessing positive examples. This explanation corroborates with

Cakmak et al. [5], who found that human teachers had a more

accurate performance estimate of the learner in active learning

modes, including human-controlled active learning, rather than

self-directed teaching. The second explanation links with our pre-

vious results on the model’s final accuracy: model behavior of an

accurate model is easier to understand. Such an explanation would

align with other empirical findings [17, 39] presented in the related-

work section 2.3.

5.4 Limitations
Our study yielded one unexpected result: during the mental model

assessment phase, participants were more able to produce negative

than positive examples. This finding contradicts the verbalizations

reported in section 4.2.1, where participants described demonstrat-

ing negative examples as more challenging. Participants’ verbaliza-

tions also suggest that they approached positive examples differ-

ently than in earlier phases. Challenges in creating negative exam-

ples are reported in prior research [8]. This observation may be due

to an experimental design artifact in the mental model assessment

session. The think-aloud protocol, which required participants to

demonstrate gestures while explaining their decisions aloud, might

have imposed a higher cognitive load, resulting in changes in the

execution of positive examples.

Asking participants to perform positive and negative examples is

not a standard approach to assess participants’ mental model, more

precisely, their predictive abilities about the model’s behavior. To

assess participants’ predictive accuracy, Sanchez et al. [39] sampled

input data to be shown to participants, who had to guess if their

model would correctly or incorrectly recognize the selected input.

They also introduced an exploration phase after the teaching ses-

sion in order for participants to familiarize with the final model’s

behavior. Cheng et al. [9] introduced variants of tests that assess par-

ticipants’ predictive ability about the model. These variants, called

unnamed attributes, alternative prediction, and decision prediction,
are also based on actual data points and suggested modifications.

Querying positive and negative labels to participants from actual
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input data, as well as the variants introduced in Cheng et al. [9],

are not feasible in the context of myoelectric prosthesis control as

there is no way to cue a muscular contraction pattern: a signal visu-

alization would not evocative. Furthermore, adding an exploration

phase would have lengthened our experiment, potentially leading

to participant fatigue, where prolonged engagement can reduce

performance and increase errors due to mental exhaustion.

Finally, we assessed the participants on the basis of a signal

which was the average EMG signal over two seconds of data collec-

tion. In doing so, we discarded the gestural strategies used by the

participants to arrive at the final postures. Keeping the raw EMG

signals would have allowed us to extend our assessment of users’

ability to control a prosthesis by inspecting the extent to which

they could achieve a given gesture. In particular, it would be inter-

esting to examine the model predictions temporally during these

two seconds of gesture stabilisation. Taking into account all the

classification decisions made from the beginning to the end of the

two seconds would have made it possible to measure the regularity

with which a user was able to maintain the desired position once it

had been reached and to devise more refined guidance strategies.

6 CONCLUSION
Modern myoelectric prostheses equipped with machine learning

aim to provide a more personalized control than conventional

methods. With ML-based prostheses, users become responsible

for “teaching" the system with examples, i.e., demonstrating asso-

ciations between their muscular contractions and the prosthesis’

gestural response. In this article, we investigated model training

strategies and tested their impact on the machine learner’s perfor-

mance and the human teacher’s (i.e., the user’s) comprehension

of the system’s behavior. Our lab experiment investigated three

model training strategies: (1) the system cues gesture classes ran-

domly (control), (2) the user selects gesture classes (teacher-led),

(3) the system queries gesture classes based on their separability

(learner-led).

Our findings indicate that both learner-led and teacher-led strate-

gies have their merits, each contributing to important aspects of

model and user training. The teacher-led strategy led to faster

model accuracy increases early in the training. The learner-led

strategy resulted in larger increase in model accuracy, more con-

sistent gestures, and more accurate mental models of users. These

results highlight the potential of these teaching strategies in the

context of prosthesis control, and suggest the benefit of demon-

stration queries to organize the curriculum, thus fostering accurate

models and users’ mental model. We discuss our results in the light

of several bodies of research, namely myoelectric control, motor

learning, human-robot interaction, and interactive machine teach-

ing. Promising research directions include the design of training

strategies with shared-initiative, experiments in ecological settings,

as well as a thorough evaluation of users’ engagement.
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7 APPENDIX
7.1 Interface for the Learner -Led and Teacher -Led conditions

(a) Interface for the Learner-Led condition. Clicking on the ’Get Gesture’ button queries the next gesture.

(b) Screenshot of interface for the Teacher-Led Condition. It consists of 8 gesture icons and a ’Capture’ button.
Participants select gestures by clicking on icon buttons. The button border turns red to indicate that a gesture has
been selected.

Figure 8

7.2 Post-Training Questionnaire
According to your experience, after having taught the system to recognize the 8 gestures, how accurately will the system recognize each

one? (0% - the system never recognizes the gesture to 100% - the system always recognizes the gesture)
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Palm Up

Palm Down

Close Hand

Open Hand

Close Pinch

Rest Hand

Point Index

Open Pinch

Figure 9: Questionnaire
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