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ABSTRACT
In this paper, we outline a diffractive practice of machine learning
(ML) in the frame of material-centered interaction design. To this
aim, we review related work in ML, HCI, design, new interfaces
for musical expression, and computational art, and introduce two
practice-based studies of music performance and robotic art based
on interactive machine learning tools, with the hope of revealing
the computational materiality of ML, and the potential of embod-
iment to craft prototypes of ML that reconfigure conceptual or
technical approaches to ML. We derive five interference conditions
for such art-based ML prototypes—situational whole, small data,
shallow model, learnable algorithm, and somaesthetic behaviour—
and describe their widening of design and engineering practices of
ML prototyping. Finally, we sketch how a process of intra-active
machine learning could complement that of interactive machine
learning to take materiality as an entry point for ML design within
HCI.

CCS CONCEPTS
• Applied computing → Media arts; Sound and music com-
puting; •Human-centered computing→ Interface designpro-
totyping.
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1 INTRODUCTION
In recent years, design research started approaching machine learn-
ing (ML) as a design material [89]. Grounded in studies of how user
experience designers effectively collaborate with ML engineers
[27, 91], it seeks to develop conceptual frameworks to envision
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divergent and socially-situated designs for ML [9, 26]. Yet, design
research still lacks specific tools to materialise such ML concepts
into design artifacts [27]. Researchers stated that “ML challenges the
general idea of prototyping” [89], which is certainly true when con-
sidering big data and deep learning approaches pushed by modern
ML engineering, but seems to overlook alternative implementations
of ML that could emerge from creative practice with ML. For exam-
ple, performers in the field of NIME—acronym for New Interfaces
for Musical Expression [67]—developed an interactive account of
ML, which can, for instance, be used to tacitly train ML models
using small, user-provided data, to craft custom gestural controllers
of sound [11, 30, 53]. More generally, embodied or somaesthetic
design approaches could help design research go beyond language
and logic to describe and explore ML as design material [48].

We believe that art practices that use code and ML as creative
material can be one such embodied approach to implement con-
crete prototypes of ML. In code-based art practice [55], artists ap-
proach ML not only as a technique to engineer logical concepts
or functionalities—such as automatic classification or reward max-
imisation by learning agents—; they also approached ML as a com-
putational material, whose raw properties, such as adaptive learn-
ing [20], model extrapolation [32], algorithmic exploration [76],
or probabilistic uncertainty [9], can be crafted and experienced
within installations, performances, and other hybrid embodiments
[1, 5, 25, 39, 64]. By focusing on MLmateriality, code-based art prac-
tice may thus help design research explore ML for what it is—i.e., a
set of computational material possessing specific properties—rather
than on what it is currently used for—e.g., a set of computational
techniques contributing to socio-cultural discourses on artificial
intelligence.

In this paper, we rely on our own art practice and that of other
artists to further understandings of ML materiality for design.
Specifically, we propose to explore diffractive methods [6] to frame
analysis and production of art-based ML prototypes within design
research, by specially attending and responding to social discourses
and material configurations in which ML is embedded. According
to Karen Barad’s material feminist theory [6], diffraction intends
to displace reflection, which assumes pre-existing subjects and ob-
jects interacting with each others, as a dominant model of inquiry.
It does so by assuming that humans and non-humans are bound
together within complex socio-material practices, which are fluid
and ever evolving; and refers to their entanglement as intra-action,
as opposed to interaction [6]. As such, we believe that diffractive
methods may help design research to consider performative and
transformative socio-material phenomena of code-based art prac-
tice, such as artists becoming engineers, algorithms living things,
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or humans embodying computational material [68, 69], as part of
ML prototyping practices. By doing so, we do not want to impose a
static understanding of the theoretical interest of diffractive prac-
tices for design research. Rather, our wish is to start a dialogue
with designers and researchers about the generative potentials of
diffractive practices, and how they may expand or restrain more
widespread methods of participatory design or material-centered
interaction design within HCI. In this, we continue prior work from
the HCI community on exploring art-based methods to reconfigure
core computing notions and enrich interaction design [8, 29, 50].

To do so, we provide a review of ML practices within art, design,
engineering and HCI, and two stabilised accounts of instances of art-
based ML prototyping of our own, which we refer to as diffractive
art practice, a term recently introduced by artists-researchers Jane
Prophet and Helen Pritchard to describe code-based art practices
that attend and respond to entanglements of social and technical—
thus material—aspects of computation [68, 69]. These two interre-
lated empirical studies explore diffractive methods in two comple-
mentary ways for ML-based art practice. In the first study, diffrac-
tion is used as a method to analyse the role that ML materiality
played along the prototyping of a NIME instrument. In the sec-
ond study, diffraction is used as a method to practice with ML and
other practitioners and material agencies along the prototyping of
a robotic art installation.

Our work led us to frame art-based ML prototyping as (a) a mode
of craft that takes embodiment of ML computational properties as
entry point for design and engineering, and (b) a socio-material
practice that reveals and reconfigure the fluid boundaries between
humans and ML technology. Specifically, our two studies suggest
five conditions for art-based ML prototyping to interfere with con-
ceptual and technical approaches to ML and widen design or en-
gineering practices of ML prototyping: namely, situational whole,
small data, shallow model, learnable algorithm, and somaesthetic
behaviour. Finally, we rely on Barad’s notion of intra-action [6] to
sketch how a process of intra-active machine learning may help
to analyse practices of ML prototyping from a more-than-human
perspective—by analogy with human-centred perspectives on ML
brought by interactive machine learning [43, 70]. To sum up our
contributions, we: (1) present two artistic works made by crafting
and experimenting with ML materiality; (2) explore diffraction as
conceptual and methodological framework for both art practice
with ML and analysis of art practice with ML in the frame of HCI;
and (3) identify five socio-technical conditions that contribute to
an understanding of ML prototypes as valid research sites in wider
material-centered interaction design.

2 RELATEDWORK
In this section, we start by introducing elements of ML that consti-
tutes its materiality. Then, we review previous work investigating
ML as design material, with its promises and caveats. We then
present how ML can be considered as creative material in art prac-
tice. We finally describe the methodological concepts that we bring
forward to frame code-based art practice within design research.

2.1 Material Elements of ML
The next paragraphs introduce components of ML as defined by
engineering approaches. These definitions are useful to understand
how art practice has enabled to switch from a technical perspective
to a material perspective on ML components, and how this switch-
ing may imply adopting novel methods for design. We identified
four elements constitutive of ML materiality (schematised in Figure
1): techniques, data, models and algorithms. Each element possesses
different structures on their own, as well as different functionalities
related to others.

Figure 1: Diagram for ML materiality. In bold: elements; in
italics: structures; in grey arrows: functionalities.

2.1.1 Techniques. ML defines different techniques that enable com-
puters to perform specific tasks in relation to a goal by directly
learning from data. In supervised learning, the goal is to learn a
function that maps inputs to outputs based on example pairs of
input-output data. The learned function enables to execute tasks
such as automatic classification and recognition of new input data.
Unsupervised learning relies on input data only: the goal is to learn
patterns within the data to enable complex tasks such as clustering
or generation. In reinforcement learning, the goal is to learn an ac-
tion policy within an environment so as to maximize some notion
of reward [77]. Other types of learning techniques exist, but in the
scope of this paper—and the projects presented below—, we focus
on these three.

2.1.2 Data. ML relies on data to perform the tasks defined above.
The data-driven nature of ML is what makes it different from pro-
gramming, which requires explicitly specifying all rules of a pro-
gram to make it work. It also makes ML attractive in a design
context, as data can be used to tacitly convey desired forms or be-
haviours to a computer. In modern ML, big data may be harvested
or synthetically created to support learning [82]. In some cases,
small data may suffice, which may involve designing appropriated
data features—e.g., gestural features, such as shape or frequency, to
use ML for gesture recognition.

2.1.3 Models. Models designate mathematical functions that em-
body a set of statistical assumptions on data. Taken alone, models
cannot afford learning: they rather act as probabilistic representa-
tions of data, and formal structures for the learning process. Some
models can be trained from small amounts of data—e.g., shallow
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models—, but in turn are highly sensitive to the choice of data
features. Others require large amount of data to be trained—e.g.,
deep learning models [44]—but may automatically compute data
features in return.

2.1.4 Algorithms. Algorithms define a set of rules used for optimiz-
ing amodel’s parameters in relation to data. Importantly, algorithms
may be interpretable in the sense that their internal functioning
can be intuitively understood by humans [71]—e.g., decision trees.
Others (the large of majority of them) remain black-boxes, and are
subject to research to make their decisions explainable from both
human and algorithmic perspectives [70, 87].

In most modern applications of ML, the incremental and pro-
gressive learning process is performed offline and separated from
usage. Typically, a deep learning model is trained by ML engineers
over large data sets; once trained, the model can be employed to
perform its task without further training. In the emerging field of
interactive machine learning, adaptation is a key property of ML,
as learning is performed online: typically, people can add, delete, or
modify small amounts of data to tacitly train an ML model [28], or
experiment with various parameters of an algorithm to fine-tune a
model’s learning [51].

2.2 ML as Design Material
Modern engineering of ML techniques has arguably provoked and
prevented many conversations on how ML could be designed, and
on what makes an ML system optimal, harmful, or ethical. How-
ever, the discourse has often focused on technical considerations
related to ML engineering. This notably involves the big amount
of data required to optimise the millions of model parameters, and
the resources needed to collect and annotate them. This also in-
volves the computational resources needed to fulfill these storage
and learning activities, which can become quite high compared to
standard computers’ performance [46]. As such, many ML-related
research in HCI has so far been driven by advances in ML engineer-
ing rather than design innovation [90]. This resulted in the creation
of ML systems whose design was partly specified by computational
ML models. For instance, endeavours have focused on developing
improved user models [56, 63], affective-enabled systems [19], or
intelligent agents [58, 62].

As as consequence, we can observe that most of ML prototyp-
ing activities is often hidden in ML research publications, as high-
lighted by research in the emerging field of human-centred machine
learning [43]. ML prototyping is here understood as the steps and
decisions taken before the communication and dissemination of
the final results. This leaves all the human work at stake in ML
prototyping activities, such as carefully labelling training data sets,
or choosing the best hyperparameters for a given algorithm, opaque
to the public or fellows in the field. Model comparison remains the
main aspect of ML prototyping that is published. Yet, it is often led
based on quantitative concepts, such as algorithmic performance on
standardised data sets, and as a result, only led within engineering
labs [86].

In recent years, design research has been concerned by devel-
oping divergent ways of analysing and practicing with ML. Re-
searchers sought to develop alternative conceptual frameworks for
both ML and artificial intelligence. Such approaches are essential

to challenge the networks of socio-material practices in which ML
is embedded. Socio-material practices of ML are here understood
as human ways of engineering ML models—as described above—,
as well as the technical elements constituting the materiality of
ML. However, design research still lacks specific tools to go beyond
Wizard of Oz ML prototypes [17]—where expected functionalities
are simulated and therefore biased by the researcher’s inquiry—,
and materialise its alternative ML concepts into fully-functioning
design artifacts [27, 89]. As a result, most research on ML as de-
sign material remain restrained in conceptual approaches, leaving
hands-on exploration of ML materiality to software engineers who
have expertise in ML.

In this context, we propose to look at the emergent field of
human-centred ML, which applies user-centred and participatory
design methods to design interactive machine learning tools [31, 76,
81], highlighting the qualitative concepts used by non-ML experts
users to evaluate ML compared to quantitative concepts used by
ML engineers [2]. Interestingly, Yang et al. observed how small data
approaches of interactive machine learning helped designers who
are not ML experts to craft and experiment with ML to build func-
tional systems [92]. We are interested in deepening understanding
of such hands-on, material-centered approaches to ML design.

Material-centered interaction design sought to bring material
perspectives into HCI inquiry [24, 88]. Within this practice-oriented
paradigm, physical and computational material are often placed on
an equal footing for design [85]. Scholars have sought to produce
conceptual frameworks for materials to be integrated earlier in the
design process [41]. Interestingly, researchers explored ways to
provide materials with more agency along research through design
processes, approaching them as co-ethnographers [42]. We argue
that this approach is the one implicitly brought by computational
artists and NIME practitioners, as presented in the following section.

2.3 ML as Creative Material
Practices in NIME and computational art have explored ML materi-
ality beyond conceptual or technical lenses, by adopting a crafting
approach to code and ML as creative material [55]. In these prac-
tices, roles of artists, designers, or engineers may often be fluid
along creative processes, with artists practicing with code, engi-
neers exploring unconventional implementations, or even some-
times, artists, designers, and engineers being one same person. Such
hands-on approaches to ML materiality have brought about novel
configurations for ML that extend or even challenge design or en-
gineering approaches to ML—e.g., human-machine co-creativity
[22, 23].

Computational artists have crafted ML materials within hybrid
physical artworks and mediums to reveal and inquire our intimate
entanglement with ML technology [4]. Poems by Allison Parrish
reveal the intuitive coherence of deep learning models trained on
large text data sets [64]. Video work by Memo Akten explores how
images generated by deep learning models trained on large data
sets push us to reflect on our collective representations of the world
[1]. Sound sculptures by Stephanie Dinkins crafted through small
data harvested by diverse communities call for better consideration
of race, gender, and aging in the building of ML technology [25].
Robotic artworks by Sofian Audry explore the affective potentials
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of adaptive behaviors produced by shallow models of reinforce-
ment learning when embodied by objects [3, 5]. Installations by
Petra Gemeinboeck and Rob Saunders explore how ML-driven al-
gorithmic exploration may provide robots with a sense of agency
and aliveness [39, 40]. Collective practice of CoMo, a smartphone-
based web application based on interactive supervised learning,
enabled a wide range of movement practitioners to experience ML
computational properties through performance [59].

In addition, the NIME community has explored embodied ways
of approaching ML, focusing on music performance as one spe-
cific case of interaction with sound and technology [11, 30, 53].
Earlier work from the MIT Media Lab explored ML to craft hyper-
instruments [57], computer theaters [66], as well as novel gestural
interaction within virtual musical environments [38]. More recently,
deformable objects were crafted to explore pre-trained ML mod-
els of sound by mapping performers’ haptic data to ML [79, 80].
Live coding environments were developed to explore data and al-
gorithms as raw material for audiovisual improvisation [52, 94].
Interestingly, interactive machine learning was also explored to
craft NIMEs, which essentially concerns the creation of a mapping
between input movement data and sound output. Bevilacqua et
al.’s Gesture Follower pioneered the use of interactive supervised
learning to craft custom gestural controllers by iteratively training
a real-time movement recogniser model using movement demon-
strations [10]—an approach followed by Françoise et al.’s XMM
[34], and many other tools [12, 21, 75]. Fiebrink et al.’sWekinator
[31, 33] was designed to allow performers and musicians to craft
sound interactions through demonstrations and allowed for incre-
mentally act upon ML components as materials constituting the
interaction design. Recently, Scurto et al.’s Co-Explorer used inter-
active reinforcement learning to let people perform sound space
exploration by communicating positive or negative reward data to
an algorithmic agent [76]. Reinforcement learning was here used
to craft sounds as well as exploration behaviours produced by the
algorithmic agent.

In this paper, we propose to make use of interactive machine
learning tools developed within the NIME community—specifically,
XMM for interactive supervised learning and Co-Explorer for in-
teractive reinforcement learning—in order to facilitate hands-on
exploration and craft of ML materiality. Our aim now is to identify
a methodological framework in which to situate such code-based
art practices as potential approach for design research.

2.4 On Design Research Methods
Artistic methods and processes were recently introduced into HCI
research to enrich both conceptual and technical advances on com-
putation [8, 50]. Specifically, reflexive methods were employed to
study participatory design of interactive machine learning with
artists and HCI researchers in contexts of art practice. Caramiaux
and Donnarumma used subjective inquiry to reflect on their five-
year collaboration on ML for music performance [20]. Fiebrink
and Sonami used interviews to relate their eight-year collaboration
on ML for instrument design [32]. While highlighting the shifting
roles and perspectives of both artists and researchers along the ML
design process, reflexive methods put the emphasis on humans as

cultural entities able to produce reflection, leaving little room for
agency of ML as a material entity.

This paper proposes to explore diffractive practices as method
to attend and respond to such specific entanglements. Diffractive
practices combine two practical advantages of participatory design
and material-centered interaction design: namely, recognition of
differences in human experiences as generative phenomena, and
recognition of non-humans as producers of material agency [6]. It
does so by relying on the practitioner’s embodied engagement with
diverse human and non-human entities, including data [78] and
other practitioners [47]. Crucially, through her material feminist
theory, Barad supports the idea that diffraction creates something
ontologically new, breaking out of the cyclical, inductive realm of
reflection [6].

The following sections introduce two interrelated studies explor-
ing the potential of diffractive methods for prototyping ML through
art practice. In the first study, diffraction is used as a method to
analyse ML materiality in a NIME instrument, created following
a linear process of conceptualisation, ML prototyping, and experi-
mentation with performers. In the second study, diffraction is used
from the starting of the project, as a method to iteratively and
recursively practice with ML with other human and non-human
actors, in the context of a robotic art project. As mentioned above,
we propose to use the term diffractive art practice, introduced by
artists-researchers Jane Prophet and Helen Pritchard [68, 69], to re-
fer to our such art practice with ML following a diffractive method.
Rather than deepening theoretical understandings of diffractive
methods, our wish is to explore how they could reconfigure prac-
tices of design and engineering usually employed with ML.

As will be detailed in each section’s introductions, each study
was conducted by the first author in a specific academic institution—
both located in France—, the first dedicated to music research, and
the second to art and design research. Their common aim was to
design novel structures and functionalities for ML by approaching
it as a creative material following a diffractive method. In Sections
3 and 4, we will see that these novel designs for ML were tightly
entangled with the design of novel human-machine interactions,
and that both fluidly emerged through interference of human and
non-human agencies along design processes. Thus, as will be dis-
cussed in Section 5, we believe that these two studies open up new
spaces for material-centered interaction design, as well as for design
research on, with, and through ML.

3 STUDY 1: SOMASTICKS
This section relates the crafting of an ML-driven NIME, somasticks,
conducted between 2017 and 2019 by the first and third author
at IRCAM, Paris, France, and its experimentation by performers
during the “movA lab days”, an international workshop held in
Nantes, France. In this study, the first author acted as a NIME
performer and designer working with ML as creative material. The
third author participated mainly in the form of conceptual and
technical advice on ML implementation. The study adopted a linear
approach to ML prototyping: first, (1) crafting an ML prototype for
gestural interactionwith sound based on the first author’s embodied
perspectives on ML materiality; then, (2) using a diffractive method
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to analyse differences in performers’ embodied perspectives on ML
as valid and generative results for prototyping.

3.1 Description
somasticks are augmented drumsticks that seek to emphasize the
somatic side of drumming practice (see Figure 2). Contrary to stan-
dard drumsticks, somasticks do not need to hit any physical object
to produce sound, but rather may be continuously waved in the air
to trigger recorded drum sounds. Such a workflow may encourage
performers to explore various movements in reaction to the internal
sensations that sounds may produce within their body, thus helping
cultivate their somatic knowledge over time.

Real drumsticks were used as tangible objects creating gestural
affordances and suggesting movements related to drumming. Wire-
less sensors1 were embedded to the sticks using a 3D-printed sup-
port specifically designed for drumsticks to harvest movement ac-
celeration data from a performer. As will be detailed below, recorded
drum samples were selected and curated to make the NIME sound
like an actual drum, and ML materials were crafted to adapt sound
generation to the performer’s movement.

Figure 2: Rendering for somasticks.

3.2 ML Prototyping
Ourwishwas to adopt an embodied approach toML to craft gestural
interaction with sound within somasticks. We thus built on the first
author’s practice as NIME performer to elicit embodied concepts
related to drumming, and used an interactive machine learning tool
to craft these concepts within a concrete prototype.

3.2.1 Eliciting Embodied Concepts. The first embodied concept
that we identified consisted in designing a form of “kinaesthetic
zoom” [35], where the sticks increase in sensibility when move-
ment activity decreases. This embodied concept can be found in
drumming, where smaller gestures often require the performer to
focus deeper on the perception of their body movement in space,
in relation to sound.

A second embodied concept consisted in designing interactions
with sound that account for the periodicity typical of drumming
movements. Instead of raw accelerometer data, we decided to design
data features related to movement frequency. We identified online
wavelet analysis2 as one method to compute a spectrogram of
1http://ismm.ircam.fr/riot/
2http://ismm.ircam.fr/mubu/

performers’ movement in real-time. The resulting workflow for
performers thus consists in producing stable movement qualities
to attempt to control the somasticks’ sound, and slightly varying
movement frequency to explore ML materiality in relation to sound.

3.2.2 Crafting ML to Materialise Embodied Concepts. We identified
unsupervised learning as one candidate technique to craft such a
kinaesthetic zoom. Specifically, we thought about using unsuper-
vised learning in an online setting: rather than separating train-
ing and performance steps—as in standard interactive supervised
learning workflows [31, 36]—, we decided to merge both to have
ML continuously learn and dynamically adapt to input movement
data. Our intention was to let performers physically interact with a
fluid and adaptive model that constantly generates sound, depend-
ing on both previous and current movement. As such, performers
could experiment with learning adaptation through the metaphor
of movement consistence: the more their movement would be con-
sistent, the more the sticks would focus in small variations in these
movements, helping performers zoom in specific qualities of their
movement. Thus, such a crafting differs from modern engineer-
ing of unsupervised learning, which leaves users passive during
learning adaptation: here, performers actively produce new unla-
beled data to shape learning adaptation, in what could be called
an interactive unsupervised learning workflow—by analogy with
interactive supervised learning workflows, in which users produce
new labeled data to interact with ML.

We used a shallow model, called Gaussian Mixture Model, to
perform the unsupervised learning task. Its simple structure, based
on Gaussian components, let us craft the kinaesthetic zoom in easier
ways than complex structures of deep neural networks. After some
initial tests, we opted for a small data approach, using wavelet
features extracted over a 10-second sliding window as training
data accounting for movement periodicity. Lastly, we crafted an
online learning algorithm by retraining the ML model every 100
milliseconds over the full data set. While non-optimal from an
engineering perspective, this implementation enabled to rapidly
experiment with classification enabled by unsupervised learning.

We used the XMM library3 for interactive machine learning [36]
and the Max/MSP visual programming environment—emerging
from NIME practices—to craft ML for the somasticks. Crucially, us-
ing this interactive machine learning tool enabled us to fully focus
on experimenting and performing with ML, by rapidly implement-
ing the envisioned ML technique, model, and data features, while
skipping the engineering of online learning algorithm—deemed to
be a joint mathematical and technical challenge for ML [61]. Full
details of the implementation can be found in [74].

We used concatenative synthesis to generate new sound patterns
from recorded samples [73]. We created six sound corpuses related
to six elements commonly found in standard drum kits: bass drum,
snare drum, rack toms, hi-hat, crash, and ride. Each corpus was
carefully designed to contain a wide variety of performing modes
related to drumming—e.g., from soft to hard hitting. These modes
are easily captured by descriptors of concatenative synthesis [73].

The first author then experimented and performed with the so-
masticks to iterate and converge on a fixed mapping between sound
and ML. This mapping makes an extensive use of the uncertainties
3http://ircam-rnd.github.io/xmm/
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produced by the Gaussian Mixture Model as creative material: prob-
abilities will dynamically adapt as performs continuously interact
with the online learning algorithm, producing variations in sound
synthesis. The instantaneous class defined the sound corpus from
which samples are played. Gaussian probabilities set the respective
gains at which samples are played. The model probability set the
rhythmic period at which new samples are played: the higher the
probability is, the faster samples are played. The probability weights
set a random temporal variation for playing a sample: the more
weighted a cluster is, the more rhythmic the playing of its samples
is. Statistical means and covariances set the choice of sound sam-
ples: we scaled means over spectral and loudness sound descriptors,
and used covariances as radius to search sound space.

3.3 Diffractive Analysis of Performers’ Data
We experimented somasticks in a workshop involving six expert
performers—two dancers, two somaticists, two musicians (see Fig-
ure 3). All performers agreed to participate without compensation
to the workshop. Performers were asked to spend between 5 and 20
minutes experimenting somasticks relying on the following advice:
listen to the produced drum sounds, focus on their bodily sensa-
tions, and move freely with the sticks. Importantly, performers were
not explained technical details on ML to fully focus on embodied
interaction and performance with ML, following a NIME approach
(similar to Section 2.3). Informal discussion was then introduced by
the first author to disrupt hierarchies between them and perform-
ers and open up analysis from a variety of perspectives. The first
author used diffractive analysis [6] to read through transcripts of
performers’ audio-visual data. Rather than seeking to normative
framings, diffractive analysis sought to illuminate differences in
performers’ embodied perspectives as valid and generative results
for prototyping.

Figure 3: Pictures of performers experimenting with soma-
sticks in the workshop.

A first observation lies in the use of bodies and perception by
both the first author and performers to experiment with the sticks.
For example, one dancer tried not to move as she was first “in quest

of silence”, then seemed to understand that movement periodicity
was crucial to the model’s functioning: “There is a kind of obstacle
course that appeared. [...] It was when I made small movements that I
managed to refocus on what I was doing, and to take back control over
the system”, she said. The other dancer seemed to grasp kinaesthetic
zooms enabled by ML: “I understood that there was a delay. This
meant that if I am doing the same thing during three seconds, the
totality [sic] will come after”, she said. The metaphors they used
suggest that the shallow model possesses rich material properties:
despite having elementary structure from a computational perspec-
tive, it managed to produce a diversity of experiences in performers,
who engaged their imaginary and bodily sensibilities to explore
ML.

The drum sticks and sounds had all performers adapt their move-
ment in different ways, depending on their specific perception. For
example, two participants reported an asymmetry in their motion:
“The sticks, really, define their very own geometry, so I focused a lot
on the trajectories defined by the lines [of the sticks]. [...] I rapidly
realized that I was very lateralized, in the sense that my right hand
dominates, and I am not trained in drumming”, one somatic practi-
tioner analysed. Another dancermodified its movement exploration,
this time in relation to the act of drumming: “As soon as I saw it, I
thought that I can play [the drums]. Thus, I begin to sit down”, she
commented. Such specific patterns of movement data could not
have been anticipated if we opted for a traditional ML engineering
approach.

Eventually, the uncertainty of unsupervised learning classifica-
tions generated strong differences in experiences between perform-
ers, with some of them praising it—“For me, there is something very
attractive in the fact that there are moments of synchrony and mo-
ments of autonomy. And in its autonomy, there were lots of variation
still, so it was always interesting to listen to, and move along with”,
one somaticist reported—, and others not hesitating to complain
about it—“It’s kind of weird. Yeah, it’s really high level, and then it’s
like, you know... You feel like you’re kind of blind, and then I have
no idea what’s going on and why”, one musician confessed. These
observations may push one to improve engineering of the learning
algorithm—which we intentionally implemented non-optimally—as
next design step for somasticks, with the goal of finding some nor-
mative formulation to improve its interpretability. Or, one may take
this materiality of ML as it is, and embrace differences in experi-
ences that it produces in performers as characteristic of somasticks.
Going in this sense, one musician suggested to test somasticks on
an actual drumset: “I think it could be great, even to refine the system
in a kind of design process, to play it with something, you know, just,
like an augmented instrument”, he said.

Through this study, we demonstrated how an embodied ap-
proach led the first author to prototype ML in ways that valued
computational properties—real-time adaptation of online learning,
classifications of unsupervised learning, uncertainty of a Gaussian
Mixture Model, and qualities of movement data—over modern engi-
neering. We also showed how diffractive analysis enabled to value
different embodiments produced by different performers as situ-
ated ways of evaluating an early ML prototype, beyond normative
framings.
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4 STUDY 2: THE APPPRENTICES
Witnessing their relevance for attending to differences in human
experiences of ML, the first author decided to leverage diffractive
methods throughout the prototyping of a collaborative robotic
art project (The Appprentices), started in 2020 at EnsadLab, Paris,
France, in collaboration with the Art Direction Nods Team (Xdlab)
of Orange, Châtillon, France. In this project, the first author acted
as computational and sound artist working with ML as creative
material. The interdisciplinary team, composed of members of the
Reflective Interaction research group of EnsadLab, and of the Art
Direction Nods Team (Xdlab) of Orange, included one media artist,
one UX designer, one product designer, one anthropologist, one
cognitive psychologist, and two engineers. The creative process
that drove the following ML prototyping relied on the first au-
thor’s diffractive art practice, who moved within and beyond team
members’ and other material agencies’ perspectives to sustain con-
versations on ML and produce novel material configurations of ML.
The next sections describe the iterative and recursive journey of
diffractive ML reading, material-centered design space stabilisation,
and diffractive ML prototyping in which the interdisciplinary team
engaged4.

The project started from a common wish to engage in the craft-
ing of a collective of behavioral objects—i.e., robotic objects that
avoid symbolic or anthropomorphic representations to diverge
from engineering-driven robotics [7, 13–15, 54]. Such an artistic ap-
proach to robotics would enable all team members to explore novel
ways of designing objects, going beyond their physical and inter-
active aspects to embrace temporal aspects of movements, sounds,
and collective behaviours of objects. A long-term goal of the project
lies in evaluating audience experience of social behaviours emerg-
ing from spatio-temporal configurations of objects. Specifically,
a shared interest resided in the exploration of ML materiality to
generate movement-sound behaviors within our object collective,
as will be detailed in the following sections.

4.1 Diffractive ML Reviewing
To start discussion and collaboration on exploringML for behavioural
objects, an interrelated understanding of ML was required. Initial
meetings thus aimed at producing a diffractive review of ML. Six
group meetings—involving individual presentations followed by
group discussions—as well as six informal brainstorming sessions
let the first author introduce data-driven techniques inherent to
ML (similar to Section 2.1), along with design concepts counterbal-
ancing modern ML engineering (similar to Section 2.2), and artistic
works exploring material configurations of ML (similar to Section
2.3). This interdisciplinary space, designed to match other team
members’ interests, was essential to avoid technical barriers and
provoke conversations on how ML could be designed.

The diverse expertise inherent to our team in turn interfered
with these reviews. One UX designer situated ML within the lens
of social and cognitive theories of learning, spanning pedagogical
methods, affective theories, and animal behaviours, to imagine new
opportunities for ML. One media artist presented a range of artistic
works in the areas of cybernetics and behavioural aesthetics [65]

4Due to the global pandemic situation, collaboration progressively switched from
in-person meetings and workshops to virtual discussions and presentations.

to situate ML in a historical context, and call for material-centred
approaches to ML to explore novel configurations between humans
and machines. One anthropologist introduced practices of animism
led by diverse human communities to have team members reflect
on their perception of ML and robotic objects as socio-material
artifacts. All in all, these diffractive readings and conversations
helped us embrace a multiplicity of different perspectives on ML,
which remained entangled throughout practice.

4.2 Stabilising a Material-Centered Design
Space

Progressively, conversations alone seem to prevent team members
from going further in ML design in relation to our object collective.
We thus decided to define a material-centered design space for The
Appprentices. While entangled in ML prototyping, object design
remains out of the scope of this paper. We will only sum up the
embodied concepts for ML that emerged from material practice
within the team, leaving details of object, sound, and movement
design as well as fabrication for a next paper.

We opted for a collective of three objects (see Figure 4). This
number was chosen to reduce complexity in the design of collec-
tive object behaviours, while also remaining sufficiently high to
study audience perception of collective object behaviours in fu-
ture work. We decided that all three objects would share same
shape (with a diameter of 15 centimeters), so that perception of
specific object behaviours would only emerge through temporal
aspects of movements, sounds, and learning. Crucially, we opted
for a hybrid installation-performance format, presenting our object
collective on a dark and circular stage with a diameter of 2 meters.
We opted for a structured performance format based on three short
parts—approximately five minutes each, resulting in a total dura-
tion of 15 minutes—, as an audience would spend relatively short
amounts of time facing the objects, reducing the probability for
complex human-objects relationships to emerge. This design con-
straint raised specific design challenge for ML, as will be detailed
below.

Figure 4: Rendering for The Appprentices.

We opted for soft materials to realise the objects’ organic, un-
cluttered, and curved shape (see Figure 4), providing them with a
sense of aliveness throughout their materiality [41]. We chose to
use the sonic artifacts produced by objects’ motorised movements
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as material for sound design, conveying a sense of physical, internal
effort for the robotic objects [93]. Lastly, we thought about using
rhythm as temporal form of expression for the objects, as well as
of interaction modality for the audience [60], who will be able to
softly hit the edge of the stage to communicate with objects using
rhythm during the third part of the performance, as we will see.
Details on object fabrication and sound and movement design will
be provided in a next paper.

To guide the design of rhythmic structures for each of the three
parts, we elicited three concepts freely inspired by social percep-
tion of animacy and agency [83, 84]: mutual aid, competition, and
attachment. These social concepts would also help to formulate
hypotheses on how collective object behaviours would be experi-
enced by an audience in future experimentations. For mutual aid,
objects would simultaneously produce metronome-like oscillatory
movements (with a one-second period): we hypothesized that the
audience would perceive a growing solidarity between objects as
their oscillatory movements would phase. For competition, objects
would successively move to produce rapid rhythmic patterns (with
a tempo of 6 beats per second): we hypothesized that the audience
would ascribe a growing strength to a given object as its rhythmic
pattern would densify. For attachment, objects would first wait that
the audience softly hit the edge of the stage to perform a rhythmic
pattern, then successively move to reproduce it: we hypothesized
that the audience would be affected by how objects would succeed
or struggle to accurately imitate their rhythm.

4.3 Diffractive ML Prototyping
Motivated by our first study, the first author proposed to use proto-
types of ML to have all team members experience material configu-
rations of ML and share their different experiences of it, without
necessarily delving into technique. Yet, crafting ML for each of
the three social concepts would have required the first author to
spend an important amount of time on implementation (as in so-
masticks linear prototyping process, described in Section 3.2), and
consequently, could have disentangled team members from the ML
prototyping activity. We thus opted for Wizard of Oz ML proto-
types: rather than individually implementing ML, we sought to
collectively embody ML computational properties by rapidly creat-
ing mock-up collective behaviours based on abstract graphical and
sonic representations (see Figure 5). Crucially, rather than simulat-
ing functionalities of modern ML engineering [17], we specifically
designed these Wizard of Oz ML prototypes so that they reproduce
structural properties of ML material elements, as will be described
below.

4.3.1 Wizard of Oz ML Prototyping. The first author started by
identifying three ML techniques to materialise the three social
concepts. For mutual aid, objects’ task would be to learn to syn-
chronize their oscillatory movements by sharing their knowledge
of others—a problem that can be addressed by multi-agent rein-
forcement learning [18]. For competition, objects’ task would be to
learn to attain maximum rhythmic density before others—a process
that can be realised by reinforcement learning [77]. For attachment,
objects’ task would be to imitate rhythms produced by the audi-
ence by learning a model of vibration data harvested through the
stage—a workflow enabled by supervised learning [16].

Figure 5: Wizard of Oz ML Prototyping for The Appprentices,
led through virtual conferencing.

The first author then used Max/MSP to implement these Wizard
of Oz ML prototypes. Data workflows specific of each ML technique
were reproduced for each part to recreate ML structural properties;
yet, learning algorithms were replaced by random generators, thus
acting as Wizards in the prototypes. Abstract white squares and
synthesised sounds were employed to create graphic and sonic rep-
resentations of robotic objects. To start a dialogue, the first author
crafted initial object configurations for each of the three parts. Mem-
bers of the team reacted positively to these prototypes, iteratively
generating ideas for objects’ movements and spatial arrangement,
while recursively adjusting the three concepts of mutual aid, com-
petition, and attachment in relation to structural constraints raised
by ML techniques and data. For example, one cognitive psycholo-
gist suggested an ML implementation for “competition”, proposing
that different exploration-exploitation trade-offs of reinforcement
learning could embody different adaptation abilities for robots, thus
echoing human and animal learning behaviours [77].

4.3.2 Material ML Prototyping. Along Wizard of Oz prototyping,
the need to experience ML materiality emerged within the team.
We decided to directly craft ML within robotic objects in order to
experience ML materiality through embodiments that are specific
to our project. We used the MisB Kit5, an open-source, modular
robotics kit enabling rapid prototyping of robotic objects using
servo-motors and velcro bars [14]. Before crafting ML, we intro-
duced the MisB Kit to members of the team in an experimental
workshop (see Figure 6). Material prototyping was useful to decon-
struct symbolic or anthropomorphic representations of robotics
among the team. One product designer and one engineer, who were
accustomed with familiar designs of robots and ML [91], generated
many ideas for life-like behaviours witnessing objects moving and
making sound in chaotic ways.

The first author eventually involved in material ML prototyping
by exploring and experimenting with the MisB Kit to converge to a
final specification forML.We used theCo-Explorer library6 for inter-
active reinforcement learning [76], the XMM library7 for interactive
supervised learning [36], and the Max/MSP visual programming

5https://misbkit.ensadlab.fr/
6https://github.com/Ircam-RnD/coexplorer
7http://ircam-rnd.github.io/xmm/
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Figure 6: Material prototyping for The Appprentices, led
through an in-person workshop.

environment to craft ML for The Appprentices. Using these interac-
tive machine learning tools enabled to rapidly experiment with ML
techniques, despite the conceptual complexity described above.

We crafted a shallow model, called Sarsa [77], to perform multi-
agent reinforcement learning and embody the concept of mutual
aid. In Sarsa, an agent acts within an environment and updates its
learning based on positive or negative reinforcement received from
the environment. Here, the task for object i is to learn to attain
the phase of object i + 1. For object i , reinforcement is obtained by
taking opposite euclidean distance to object i+1’s phase. While non-
optimal from an engineering perspective, this circular definition
entangles the objects’ cooperative learning. As we wanted our ob-
jects to learn in less than five minutes—due to temporal constraints
raised by the hybrid installation-performance format—, we opted
for a small data approach, taking as discrete state the object’s phase
of actuation, and the corresponding actions as increasing or de-
creasing the phase by one discrete step. We used different discount
factors for different objects as learning algorithms for multi-agent
reinforcement learning: a factor approaching 0 will make the agent
short-sighted by only considering current rewards, while a factor
approaching 1 will make it strive for a long-term high reward. As
such, objects with best memorising abilities will cooperate with
more forgetful objects by guiding their learning through positive
or negative reinforcement.

We also crafted a shallow Sarsa model to perform reinforcement
learning and embody the second concept of competition. The ob-
jects’ task is to individually learn to attain maximum rhythmic
density as quickly as possible. While usually hidden in engineering
approaches, such real-time learning would materialise the antago-
nisms of these objects. Due to the five-minute duration constraint,
we opted for a small data approach, taking as discrete state a four-
beat rhythmic pattern for object actuation, and the corresponding
actions as activating or deactivating one beat in the pattern. Rein-
forcement is positive when an action densifies the rhythmic pattern,

and negative otherwise. We used an ε-greedy policy as interpretable
algorithm for real-time learning: an ε value approaching 1 will make
the agent only explore its environment (equivalent to a random
behaviour), while a value approaching 0 will make it only take
actions that yield the most reward (but will risk leading it to remain
stuck in local rhythmic optima). As such, objects that balance be-
tween exploration and exploitation will be firsts to find maximum
rhythmic density, while other will struggle or fail to learn to attain
it.

We crafted a shallow model, called Hierarchical Hidden Markov
Model [36], to perform supervised learning and embody the concept
of attachment. Our idea here is to use supervised learning to have
objects imitate rhythms produced by an audience, thus engaging
the audience in a communicative relationship with objects, itera-
tively exploring the objects’ different learning abilities, as well as
experiencing the clumsymoves and sounds produced by the objects’
materialities. The objects’ task is to learn to reproduce the audi-
ence’s vibration pattern through some sequence complexity. While
usually employed to fine-tune a model’s learning in engineering,
different sequence complexities provide different expressive abili-
ties to objects linked with timing precision. We opted for a small
data approach, taking time as input data, and audience vibration
energy over time as output data. We used an interactive supervised
learning workflow as interpretable algorithm, combining a demon-
stration step—the audience performing a rhythmic pattern—and a
performance step—objects imitating the rhythmic pattern.

Members of the team engaged their bodily sensibilities to inter-
pret learning behaviours embodied by objects’ rhythmicmovements
and sounds. One engineer reported that the progressive alignment
of objects’ sound and movement in the first part somehow surprised
him, as it embodied some kind of team effort across objects. The
first author noticed the empathetic relations emerging between
objects in the second part, observing how the objects succeeded,
struggled, or failed to produce dense rhythms. One media artist,
one UX designer, and one anthropologist were surprised to wit-
ness some sweetness emerging from objects’ tentative imitations in
the third part, comparing them to child objects that strive to com-
municate with their vibrating bodies, with different expressivities
depending on their sequency complexity. Current work includes
preparation of an experimental setup to investigate how members
of an audience experience these ML-driven rhythmic behaviours
and compare it to our design hypotheses and own experiences with
the robotic object collective.

The study reviewed above demonstrated how displacing and
diffracting the practitioners helped produce novel configurations
for ML, situating their prototyping within socio-material practices
by opening space for experimentation and communication on com-
putation. It also showed how embodied perspectives led members
of the team to prototype ML in ways that valued computational
properties—probabilistic decisions of reinforcement learning, explo-
ration and learning abilities of algorithms, imitation complexities of
Hidden Markov Models, and performativity of vibration data—over
modern engineering.
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5 DISCUSSION
In this section, we discuss our diffractive art practice with ML to (1)
identify socio-technical conditions for art-based ML prototypes to
produce constructive interferences between conceptual and techni-
cal approaches—thus becoming valid research sites on their own
for material-centered interaction design—, and (2) sketch contours
of an intra-active understanding of ML to start a dialogue on using
diffractive practice in wider design research. We finish by (3) stat-
ing the limitations of the present inquiry, calling for contributions
from other designers and researchers to deepen theoretical under-
standings of how diffractive practices may extend or restrain other
design methods.

5.1 Interference Conditions for Art-Based ML
Prototypes

The interactive machine learning tools used in our two studies
enabled to craft ML in ways that favoured embodiment of ML ma-
teriality through mediums such as sound, visuals, or movement.
As such, the produced ML prototypes slightly differ from modern
ML systems found in engineering and design: while the latters
often privilege the realisation of logical concepts or functional-
ities through technical engineering, our prototypes emphasised
the experience of raw computational properties through incremen-
tal crafting. The next sections derive five socio-technical condi-
tions for such art-based ML prototypes to interfere with conceptual
and technical approaches, based on qualitative analysis of our two
practice-based studies.

5.1.1 Situational whole. Through our studies, we were able to
observe that art-based ML prototypes take their whole dimension
as interdisciplinary research sites when they are deployed “in the
wild”, that is, when they are practised out of engineering labs where
ML materials are usually developed—as already demonstrated by
Wagstaff [86]. Such a situational whole, defined by Giaccardi et al. as
the network of social and cultural values and individual experiences
in which materials are embedded [41], should be understood as
the entry point for art-based ML prototypes to be appropriated by
researchers and practitioners from diverse fields, in tight relation
with other materials—e.g., objects, sounds, configurations—, as our
studies have shown. Situational wholes thus open pathways to the
design and development of ML materials that are entangled with
social and cultural factors [6].

5.1.2 Small data. In addition, we also witnessed that art-based ML
prototypes should go widespread big data approaches and build on
small data approaches, which allow for intuitive apprehension of
ML pipelines by researchers and practitioners who are not ML ex-
perts [31]. The performers in our first study reported that they took
control over their movement data as our ML prototype accounted
its periodicity over a short temporal scale. The artists and design-
ers in our second study were able to experience the data-driven
structures and functioning of both Wizard of Oz and material ML
prototypes of our robotic object collective. Small data thus opens
possibilities for designing ML systems that are scaled to their hu-
man users, and that can be collectively crafted by communities of
people under-represented within ML research [25]. Additionally,

small data may act as intermediary step for non-ML experts to en-
gage in modern big data approaches, providing them with further
computational properties for material design.

5.1.3 Shallow model. The findings of our studies suggest that art-
based ML prototypes’ ability to adapt to humans and non-humans
was realised by shallow models able to rapidly learn online [36].
Contrary to deep learning models, which afford rich computational
properties at the cost of large amounts of data and ML expertise
[1, 64], shallow models’ elementary computational tasks, such as
classification or decision-making, provide probabilistic properties
that remain to be engaged as material by designers [9], building on
advantages of small data. At the same time, shallow learning models
require standard computational power to be trained, which may
reduce joint economical and environmental cost of building ML
systems [46]. In a nutshell, shallow models offer researchers and
designers possibilities to prototype ML systems without relying on
large human and computer infrastructures. Additionally, shallow
models may enable crafting of deep learning models based on small
data, by being used in conjunction with pre-trained deep learning
models—an approach known as transfer learning [72].

5.1.4 Learnable algorithm. Our two studies also shows the impor-
tance of art-based ML prototypes to rely on learnable algorithms
to keep their learning abilities appreciable to non-ML experts as
much as to ML experts [87]. Our observations suggest that non-ML
experts may seize a learning algorithm when the actions that it
produces are related toward a rational task. This task can either be
goal-oriented, as in most engineering approaches—e.g., classifying
human data in our first study—or open-ended, as in some design ap-
proaches [76]—e.g., exploring an environment in our second study.
The notion of learnable algorithms thus open ways to move beyond
notions of interpretability or black-box to approach ML as a mate-
rial, whose properties should be explored by artists, designers, or
other communities of people, as much as by engineers.

5.1.5 Somaesthetic behaviour. Beyond engineering aspects, our
work illuminates the importance of ML prototypes’ somaesthetic be-
haviour—understood as the temporal aspects of computational prop-
erties of ML experienced through some medium—, which helped
artists project themselves into ML data, models, algorithms, tech-
niques, and computations using their bodies and perception in addi-
tion to their rational thinking [48]. The interactive learning of our
ML prototypes, including the errors and strivings of non-optimal
learning, created behavioural morphologies that were intuitively
embodied by art practitioners [3]. As such, somaesthetic behaviour
should be understood as one intrinsic feature of ML prototypes,
enabling to deconstruct symbolic or anthropomorphic representa-
tions of intelligent behaviours in ML by including the weaknesses
and vulnerabilities that make us humans learn. Somaesthetic ap-
preciation of ML prototypes thus opens holistic approaches to the
design of ML systems, suggesting that the behaviours produced by
ML computational properties may be as valid as its engineering to
be approached as design material within HCI inquiry [76].

5.2 Intra-Active Machine Learning
The understanding of diffractive art practice withML discussed here
assembles complex disciplinary concepts, techniques, and practices,
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as well as diverse roles of artists, designers, and engineers, into
one fluid and ever evolving socio-material phenomenon [6]. The
next sections sketch contours of intra-active machine learning, a
diffractive practice that may attend and respond to assemblages of
design and engineering beyond the realm of art to produce novel
ways of becoming ML practitioners.

5.2.1 Embracing Differences between Design and Engineering. In
most ML design processes, including interactive machine learn-
ing, designers often work with ML engineers through predefined
collaboration processes, where conceptual and practical roles are
static and well delineated. Yet, our art practice with ML reveals
how ML can also be designed iteratively and recursively, through
hands-on experimentation with ML materiality. The shallow mod-
els resulting from such a practice may evolve into more developed
structures through iterative design and engineering with communi-
ties of users and stakeholders over longer time periods [76]. Yet, the
resulting crafts may be perceived as elementary, or even erroneous,
by modern practices of engineering or design mainly oriented to-
ward established approaches of computational modelling.

An intra-active understanding of ML calls for resisting such nor-
mative framings of ML by producing novel material configurations
that embrace differences between design and engineering. Within
such a process, art-based ML prototypes may thus be considered
as valid research sites in their own, supporting the reconfiguring
of core computing notions by living at the boundaries of more
established practices. By making transparent their underlying as-
sumptions using small data and learnable algorithms, practitioners
may entangle qualitative and quantitative concepts of established
design or engineering frameworks, and create space for emergence
of novel concepts for ML, specifically produced by differences, in-
terferences, and intra-actions between these disciplinary practices,
as our studies have shown.

5.2.2 Becoming A Diffractive ML Practitioner. In the two interre-
lated accounts of art-based ML prototyping developed here, the
first author sought to report the process of moving within and be-
yond reflexive practice to become a diffractive ML practitioner, who
materially constitutes themself through intra-action among prac-
tices, materials, techniques, as well as artists, performers, designers
and engineers. It is not to say that this displacing and diffracting
the self who practices ML is without costs. Fragile configurations
of computational materials can push established ML researchers
and engineers to question their relevance or accuracy. As such,
tensions can occur between the diffractive practitioner and other
practitioners not necessarily aware of the diffractive method being
applied. Yet, such costs of being simultaneously nowhere and ev-
erywhere within ML must be considered with respect to the costs
required to independently design or engineer ML: innovating ML
as design material implies large-scale research and teaching effort
[89], and engineering modern ML techniques requires large human
and computational infrastructure or institutions [43].

By paying attention to small details of intra-actions and focusing
on becoming-with others [47], diffractive methods can contribute
to reconfigure complex socio-material practices of ML. As sketched
above through the concept of situational whole, appropriation of
ML computational properties by artists and designers emerged
through tight engagement and collaboration with ML engineers,

where individualities fluidly adjust to each other, going up to dis-
placing and diffracting creative roles along the process [20, 32].
Embracing somaesthetic behaviours can be one way to facilitate
communication between individuals, including computational and
robotic entities, relying on pre-reflexive and non-verbal cues as ba-
sis for embodiment of material properties [48], and performance for
fluid alterations of judgement and configurations between people,
materials, and practice [41]. By extending reflexive methods of in-
teractive machine learning, diffractive methods for intra-active ma-
chine learning may have the potential of assembling socio-material
practices of ML in a process of more-than-human design in HCI
[37].

5.3 Limitations
In this paper, we took the decision to put processes and mate-
rials involved in ML-based diffractive art practice forward. This
approach enabled us to identify features and notions that may be
seen as intermediary knowledge, or strong concepts [49], captur-
ing generative qualities of art-based ML prototyping and making
them explicit for the field to build upon. Yet, we did not attempt to
deepen our explorations of diffractive methods at a theoretical level.
Rather, our wish was to start a dialogue with other designers and
researchers from the field on how diffractive methods may expand
or restrain other design methods. As a specific group of artists, de-
signers, researchers, and engineers, our intuition is that diffractive
methods better recognise the fluidity between human and non-
human actors than participatory design—emphasising humans—or
material-centered interaction design—emphasising non-humans.
In this sense, it may share similarities with framings of research
through design as post-phenomenological practice [45], while how-
ever putting more emphasis on performativity inherent to human-
things relations, thus opening ways to better trace responsibility in
ML design processes [37]. Future research may investigate such eth-
ical and theoretical aspects of diffractive methods, especially on the
topic of ML, whose embedding in social and political dimensions is
critical.

6 CONCLUSION
This paper explores the potentials of diffractive art practice as
method to prototype ML in design research. Through a review
of technical, artistic, and conceptual approaches to ML, and two
accounts of practice-based studies with ML of our own, we argue
that novel ways to prototype ML can emerge through embodiment
of ML materiality and craft of ML techniques, data, models, and
algorithms. Thus, ML prototypes may be realised based on small
data, shallow models, and learnable algorithms, to produce novel
somaesthetic behaviours that can be experienced and discussed by
a diversity of practitioners. The socio-technical conditions derived
for producing art-based ML prototypes pave the way for an intra-
active understanding of ML that embraces differences between
practices of design and engineering through diffractive practice.
While produced by a specific group of artists, designers, researchers,
and engineers, we hope that the present work will encourage other
individuals from a diversity of communities, both academic and non-
academic, human and non-human, to produce novel understandings
of our intimate entanglements with ML technology.
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