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Software tools for generating digital sound often present users with high-dimensional, parametric interfaces,
that may not facilitate exploration of diverse sound designs. In this article, we propose to investigate arti-
ficial agents using deep reinforcement learning to explore parameter spaces in partnership with users for
sound design. We describe a series of user-centred studies to probe the creative benefits of these agents and
adapting their design to exploration. Preliminary studies observing users’ exploration strategies with para-
metric interfaces and testing different agent exploration behaviours led to the design of a fully-functioning
prototype, called Co-Explorer, that we evaluated in a workshop with professional sound designers. We found
that the Co-Explorer enables a novel creative workflow centred on human-machine partnership, which has
been positively received by practitioners. We also highlight varied user exploration behaviours throughout
partnering with our system. Finally, we frame design guidelines for enabling such co-exploration workflow
in creative digital applications.
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1 INTRODUCTION

Reinforcement learning (RL) defines a computational framework for the interaction between a
learning agent and its environment [73]. The framework provides a basis for algorithms that learn
an optimal behaviour in relation to the goal of a task [97]. For example, RL was recently used
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to learn to play the game of Go, simulating thousands of agent self-play games based on human
expert games [92]. The algorithm, called deep RL, leveraged advances in deep neural networks to
tackle learning of a behaviour in high-dimensional spaces [71]. The autonomous abilities of deep
RL agents let machine learning researchers foresee prominent applications in several domains,
such as transportation, health care or finance [65].

Yet, one important current challenge for real-world applications is the ability for RL agents to
learn from interaction with human users. The so-called interactive RL framework has been shown
to hold great potential to build autonomous systems that are centred on human users [3], such as
teachable and social robots [98], or assistive search engines [9]. From a machine learning perspec-
tive, the main challenge lies in learning an optimal behaviour from small, non-stationary amounts
of human data [57]. From a human-computer interaction (HCI) perspective, an important chal-
lenge consists in supporting human appropriation of agents’ autonomous behaviours in relation
to complex human tasks [95].

Our interest lies in investigating interactive RL for human creative tasks, where a goal might
not be well-defined by human users a priori [82]. One such case of a human creative task is ex-
ploration [45]. Exploration consists in trying different solutions to address a problem, encouraging
the co-evolution of the solution and the problem itself [29]. For example, designers may produce
several sketches of a product to ideate the features of its final design, or test several parameter
combinations of a software tool to create alternative designs in the case where the product has
a digital form. The creative, human-centred, use case of exploration thus fundamentally differs
from standard, machine-centred, RL use cases, where a problem is implicitly defined as a goal be-
haviour, before the agent actually learns to find an optimal solution [97]. Here, one could expect
that humans would prefer agent autonomous behaviours—provoking surprise and discovery along
exploration—over the learning of one optimal solution—forcing human users to teach agents one
optimal behaviour.

In this article, we aim at designing an interactive RL system supporting human creative explo-
ration. This question is addressed in the application domain of sound design, where practitioners
typically face the challenge of exploring high-dimensional, parametric sound spaces. We propose
a user-centred design approach with expert sound designers to steer the design of such a system
and conceptualize exploration within this context. We conducted two case studies to evaluate two
prototypes that we developed. The final prototype specifically designed deep RL to foster human
exploration. Specifically, it employs RL as an algorithmic approach to dynamically suggest differ-
ent sounds to users based on their feedback data—thus possibly contributing to their exploration
process. Therefore, contrary to typical RL-based tools, it does not aim at creating fully-trained
agents that could be optimally reused by users across different sessions. Our overall proposed
methodology thus radically differs from standard RL approaches.

Our findings led to contributions at several levels. On the conceptual side, we were able to
characterize different user approaches to exploration, and to what we have called co-exploration—
exploration in cooperation with an interactive RL agent. These range from analytical to sponta-
neous in the former case, and from user- to agent-as-leader in the latter. On the technical side,
a user-centred approach let us adapt a deep RL algorithm to the case of co-exploration in high-
dimensional parameter spaces. This notably required creating additional interaction modalities to
user reinforcement, jointly with an autonomous exploration behaviour for the RL agent. Crucially,
our qualitative results suggest that the resulting agent—especially its non-optimal nor predictable
behaviour—may be well experienced by human users leading parameter exploration, in more cre-
ative ways than random conditions. Lastly, on the design side, we extracted a set of important chal-
lenges that we deem critical for joint HCI and machine learning design in creative applications.
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These include: (1) engaging users with machine learning; (2) foster diverse creative processes; and
(3) steer users outside comfort zones.

2 RELATED WORK

In this section, we review related work on machine learning in the field of HCI, encompassing
creativity support tools, interactive machine learning and interactive RL, with a focus on human
exploration.

2.1 Creativity Support Tools

Human creative exploration of multidimensional parameter spaces has long been studied in the
NIME community (acronym for New Interfaces for Musical Expression, originally emerging as
a workshop at CHI [79]). Techniques for mapping input user parameters (e.g., gestural control
data) to output multidimensional parameters (e.g., sound synthesis parameters) were developed
to support exploration through new digital music instruments [48, 49]. Perceptual descriptors of
sound enabled to reduce dimensionality of sound spaces, thus providing users with more intuitive
interfaces to explore sound spaces [85]. Yet, besides a few exceptions [35], the creative process of
human users leading parameter exploration with computer music software has still been hardy
investigated from a research perspective.

Creativity support tools have long focused on human exploration as a central process to human
creative work [91]. Design guidelines for supporting exploration were developed, which include
aiming at simple interfaces for appropriating the tool and getting into sophisticated interaction
more easily [28]. Flexible interaction modalities that can adapt to users’ very own styles of think-
ing and creating may also be required [82]. In particular, parameter space exploration remains a
current challenge for HCI research [16]. Recently, creativity-oriented HCI researchers underlined
the need to move towards interdisciplinary research collaborations [77].

Machine learning was in this sense examined for its implications in design [58] and identified as
an opportunity for user experience [30, 104, 105]. Yet, a large body of work in the machine learning
research community has so far focused on constructing autonomous algorithms learning creative
behaviour from large amounts of impersonal data—falling under the name of computational cre-
ativity [101]. While this have allowed the building of powerful tools and models for creation, one
may be concerned in the question of how to include human users in the design of such models to
support human-computer co-creation [53].

Davis et al. proposed a model of creativity that explicitly considers the computer as an enactive
entity [23]. They notably stressed the potential of combining creativity support tools with compu-
tational creativity to enrich a collaborative process between the user and the computer [23]. The
Drawing Apprentice, a co-creative agent that improvizes in real time with users as they draw, il-
lustrates their approach [22]. While their user study confirms the conceptual potential of building
such artistic computer colleagues, its technical implementation remains specific to the use case at
stake—e.g., drawing. We propose to jointly design a conceptual and technical framework that could
be easily transferable to other application domains—potentially realizing general mixed-initiative
co-creativity [47, 106].

2.2 Interactive Machine Learning

Interactive machine learning [31] allows human users to build customized models by providing
their own data examples—typically a few of them. Not only users can customize training examples,
but they are also allowed to directly manipulate algorithm parameters [54, 102], as well as to
receive information on the model’s internal state [4, 76]. Applications in HCI cover a wide range of
tasks, such as handwriting analysis [90], recommender systems [5] or prioritising notifications [6].
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Interactive machine learning mainly builds on supervised learning, which defines a computational
framework for the learning of complex input-output models based on example input-output pairs.
The “human-in-the-loop” approach to supervised learning critically differs from the computational
creativity approach, which typically relies on huge, impersonal databases to learn models [43].

Interactive machine learning is one such example of a generic framework for human-computer
co-creation [3]. The technical framework was successfully applied across several creative domains,
such as movement interaction design [39, 42, 108], web page design [63] or video games [56].
Specifically, research studying users building customized gestural controllers for music brought
insight on the creative benefits of interacting with machine learning [34]. Not only were users
able to accomplish their design goal—e.g., demonstrating a given gesture input for controlling a
given sound parameter output—but they also managed to explore and rapidly prototype alternative
designs by structuring and changing training examples [35]. These patterns were reproduced by
novice users who gained accessibility using examples rather than raw parameters as input [55].
The algorithms’ sometimes surprising and unexpected outcomes favoured creative thinking and
sense of partnership in human users [33].

Typical workflows in interactive machine learning tend to iterate on designing training exam-
ples that are built from a priori representative features of the input space to support exploration.
Yet, in some creative tasks where a problem definition may be found only by arriving at a solution
[29, 83], it might be unfeasible for users to define, a priori, such representative features of the final
design [55]. Other approaches proposed methods to release such contraints, for example by ex-
ploring alternative machine learning designs by only defining the limits of some parameter space
[87]. We propose to further investigate machine learning frameworks able to iteratively learn from
other user input modalities, and explicitly considering mixed-initiative workflows, where systems
autonomously adapt to users [26]. As reviewed in the next section, using interactive RL offers such
perspectives.

2.3 Interactive Reinforcement Learning

Interactive RL defines a computational framework for the interaction between a learning agent,
a human user and an environment [3]. Specifically, users can communicate positive or negative
feedback to the agent, in the form of a numerical reward signal, to teach it which action to take
when in a certain environment state. The agent is thus able to adapt its behaviour to users, while
remaining capable of behaving autonomously in its environment.

While user feedback has been used as input modality for applications in information retrieval
[109], recommender systems [61] or affective computing [66], it was often included in algorithmic
frameworks relying on pre-established, rule-based methods to provide users with adaptive be-
haviour. The data-driven abilities of RL, in contrast, offers promising perspectives for open-ended,
interactive applications that are centred on human users. In this sense, interactive RL relies on
small, user-specific datasets, which contrasts with the large, crowdsourced datasets used in cre-
ative applications in semantic editing [25, 62, 107]. Lastly, interactive approaches to RL focuses
on exploring agent actions based on human feedback on actions, which contrasts with the fo-
cus on optimising one parametric state based on user feedback over states—as used in Bayesian
optimization (BO) [13, 67] or multi-armed bandits [68].

Interactive RL has been recently applied in HCI [84], with promising applications in exploratory
search [10, 44] and adaptive environments [40, 80]. Integrating user feedback in RL algorithms is
computationally feasible [94], helps agents learn better [57], can make data-driven design more
accessible [68] and holds potential for rich human-computer collaboration [95]. Applications in
human-robot interaction informed on how humans may give feedback to learning agents [98],
and showed potential for enabling human-robot co-creativity [36]. Recently, RL has witnessed a
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rise in popularity thanks to advances in deep neural networks [71]. Powerful models including
user feedback have been developed for high-dimensional parameter spaces [19, 99]. Design re-
searchers have identified RL as a promising prospective technique to improve human-machine
“joint cognitive and creative capacity” [60].

We believe that interactive RL—especially deep RL—holds great potential for supporting cre-
ative tasks—especially exploration of high-dimensional parameter spaces. First, its computational
framework, constituted by environment states, agent actions and user feedback, remains fully
generic [97], and thus potentially allows the design of generic interaction modalities transferrable
to different application domains. Second, the action-oriented, autonomous exploration behaviour
intrinsic to RL algorithms may be exploited to build a novel creative mixed-initiative paradigm,
where the user and the agent would cooperate by taking actions that are “neither fully aligned nor
fully in conflict” [20]. Finally, we consider that user feedback could be a relevant input modality in
the case of exploration, notably for expressing on-the-fly, arbitrary preferences toward imminent
modifications, as opposed to representative examples. As previously stated, this requires investi-
gating a somewhat unconventional use of RL: if previous works employed user feedback to teach
agents an optimal behaviour in relation to a task’s goal, it is less obvious whether such an optimal
behaviour may be well-defined—or even exists—for human users performing exploration.

3 GENERAL APPROACH

In this section, we describe the general approach of our article, applying interactive RL for human
parameter space exploration in the creative domain of sound design.

3.1 Problem Formulation

In this article, we seek to address the following general research question: How to design RL to
support human parameter exploration? While many formulations of RL could be imagined to ad-
dress this question, our approach focused on an interactive use case of RL, where feedback data is
provided in real-time by a human user. We hypothesize that such formulation may be of interest
for users leading parameter exploration.

We investigate the RL problem in the context of classical sequential decision making. Let S = {S}
denote the state space constituted by all possible parameter configurations S = (sy, ..., s,) reach-
able by the agent, with n being the number of parameters, and s; € [Sin, Smax] being the value of
the i*" parameter living in some bounded numerical range. Let A(S) = {A} denote the correspond-
ing action space as moving up or down one of the n parameters by one step a;, except when the
selected parameter equals one boundary value. As the agent selects actions and iteratively acts on
parameters one by one, we assume that a human observes the state-action path and interactively
provides positive of negative feedback, R, to the agent. The agent’s goal is to maximize user feed-
back, which it does by learning a mapping between state and actions defined from user feedback.
In order to allow such real-time human interaction with the currently-learning agent, we only
consider on-policy settings of RL—as opposed to off-policy settings, which separates a behaviour
policy for real-time environment exploration from an estimation policy that learns from reinforce-
ment [97]. Designing RL for human parameter exploration thus consists in understanding what
interactive mechanisms may be relevant for the agent to support human exploration.

Learning action values instead of state values constitutes the main reason for treating the task
as an RL problem. By definition, human parameter exploration has a strong dependence between
current state and action to the next state. It is precisely there that lies our rationale behind RL:
to account for human actions in parameter state exploration. Conversely, BO algorithms do not
take into account actions leading to states when exploring parameter states. As such, BO may be
relevant for parameter search—e.g., optimization of a parametric state based on user feedback over
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Fig. 1. A typical VST interface in Ableton Live (sound design software), containing many technical
parameters.

states—but not for parameter exploration—e.g., trial of parameter actions based on user feedback
over actions. Contextual Bandits, on the other hand, only afford learning of action values from a
small, discrete set of states. In our case study, we will show that learning in continuous state-action
spaces is required to tackle parameter space exploration, and that RL—especially its deep learning
extension—suits this task. We will also observe that the interactive RL formulation enables users
to explore parameter spaces by providing relatively small amounts of feedback data—an average
of 235 feedback data during a typical session, with a large standard deviation corresponding to
diverse user feedback behaviours. This is in contrast with the large datasets often required in
more standard RL applications to continuous action spaces.

3.2 Application Domain

Sound design is an exemplary application domain for studying exploration—taking iterative ac-
tions and multiple steps to move from an ill-formed idea to a concrete realization [41]. Sonic ex-
ploration tasks can take myriad of forms: for example, composers explore various sketches of their
musical ideas to write a final score; musicians explore different playing modes to shape an instru-
ment’s tone; and sound designers explore several digital audio parameters to create unheard-of
sounds [24, 72].

Most of today’s digital commercial tools for sound synthesis, named, Virtual Studio Technol-
ogy (VST) (see Figure 1), still rely on complex interfaces using tens of technical parameters as
inputs. These parameters often relate to the underlying algorithms that support sound synthesis,
preventing users from establishing a direct perceptual relationship with the sound output. To that
one may add the exponential number of parameter combinations, called presets, that eventually
correspond to given sound designs. It is arguable that these interfaces may not be the best to sup-
port human exploration: as the perceptual outcome of acting on a given parameter may rapidly
become unpredictable, they may hinder user appropriation [82, 91].

By formalizing human parameter space exploration as an interactive RL problem, we seek to
tackle both issues at once. First, human navigation in high-dimensional parameter spaces may be
facilitated by the RL computational framework, made of sequences of states, actions, and rewards.
Second, human creativity may be stimulated by the action-oriented, autonomous behaviour of RL
algorithms, suggesting other directions or design solutions to users along exploration.

3.3 Method

We adopted a user-centred approach to lead joint conceptual and technical work on interactive RL
for parameter space exploration. We decided to work with expert sound designers to get feedback
on the creative task of parameter space exploration as it is led by specialized users. This qualitative
understanding would in turn inform the design of interactive RL in its application to sound design.
Two design iterations—a pilot study and an evaluation workshop—were conducted over the course
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of our research. Two prototypes were designed and developed—one initial RL prototype, and the
Co-Explorer, our final deep RL prototype. The process thus includes sequentially:

—Prototype 1: Implementing an RL algorithm that learns to explore sound parameter spaces
from binary human feedback

—Pilot study, Part 1: Observing and interviewing participants exploring sound spaces with
standard parametric interfaces

—Pilot study, Part 2: Observing and interviewing participants using our initial RL prototype
to explore a sound space

—Prototype 2: Designing deep RL in response to design ideas suggested by our pilot study,
implementing it in the Co-Explorer

—Workshop, Part 1: Observing and discussing with participants using the Co-Explorer, our
final prototype, in an exploration task related to discovery

—Workshop, Part 2: Observing and discussing with participants appropriating the Co-
Explorer, our final prototype, in an exploration task related to creation

We worked with a total of 14 users (5 women, 9 men; all French) through the series of activi-
ties. From the 14 total, there were 2 who took part in all of the activities listed below, to testify of
our prototype’s improvements. Our users covered different areas of expertise in sound design and
ranged from sound designers, composers, musicians and artists to music researchers and teach-
ers. Thus, they were not all constrained to one working methodology, one sonic practice or one
application domain. Our motivation was to sample diverse approaches to exploration that sound
design may provoke, in order to design a flexible RL algorithm that may suit a variety of users’
working styles [82].

4 PILOT STUDY

We organized a 1-day pilot study with four of our expert participants. The aims of this pilot study
were to: observe approaches to exploration in standard parametric interfaces; identify problems
users experience; introduce the RL technology in the form of a prototype; and brainstorm ideas
and possible breakdowns.

The study was divided in two parts: (1) parametric interface exploration, and then (2) interac-
tive RL-based exploration. We conducted individual semi-structured interviews at the end of each
part, having each participant do the study one by one. This structure was intended to bring each
participant to become aware of their subjective experience of exploration [78]. Our intention was
to open up discussions and let participants suggest design ideas about interactive RL, rather than
testing different algorithmic conditions in a controlled, experimental setup. We spent an average
of 2 hours with each of our four participants, who covered different expertise in sound design
(composition, sound design, interaction design and research).

4.1 Part 1: Parametric Interfaces

4.1.1  Procedure. In the first part of the study, participants were asked to find and create a sound
preset of their choice using three different parametric interfaces with different number of param-
eters (respectively, 2, 6 and 12, see Figure 2). No RL agent was used. We linked each interface to
a different sound synthesis space (respectively, created using Frequency Modulation (FM) synthe-
sis,! and one commercial VST from which we selected 6, then 12, parameters). Our goal was to

investigate how the number of parameters on an interface might influence exploration of large

LFM synthesis (a classic algorithmic method for sound synthesis [18]).
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FM VST VST
synth A A A

Fig. 2. Schematic view of the three parametric interfaces.

perceptual spaces. As such, we used the FM synthesis because of the large perceptual space it
offers relying on only two parameters.

Sound was synthesized continuously; participants’ actions were limited to move the knobs us-
ing the mouse to explore the design space offered by all possible combinations. While we agree
that tangible interfaces are extensively used by professional sound designers, we underline that
the mouse remains used in other creative domains where real-time multi-dimensional control is
needed (e.g., graphic design). As such, we decided to use the mouse for this pilot experiment to
study the general task of parameter space exploration. Knobs’ technical names were hidden to test
the generic effect of parameter dimensionality in interface exploration, and avoid any biases due
to user knowledge of parameter function (which typically occur with labelled knobs). Interface
order was randomized; we let participants spend as much time as they wanted on each interface
to let them explore the spaces freely.

4.1.2  Analysis. We were interested in observing potential user strategies in parameter space
exploration. We thus logged parameter temporal evolution during the task. It consists in an n-
dimensional vector, with n being the number of parameters (respectively, 2, 6, then 12). Sample
rate was set to 100 ms, which is a standard value for interaction with sound and musical interfaces
[52]. We used Max/MSP? and the MuBu? library to track user actions on parameters and record
their evolutions. We used structured observation to study participants’ interviews. This method
was meant to provide a thorough qualitative analysis on user exploration strategies.

4.1.3 Observations. Qualitative analysis of parameter temporal evolution let us observe a con-
tinuum of approaches to parametric interface exploration. We call the first extremity of this con-
tinuum analytical exploration: this involves actioning each of the knobs one after the other over
their full range. The second is called spontaneous exploration: this involves making random ac-
tions on the knobs. Figure 3 shows examples for each of these two approaches. One participant
was consistently analytical over the three interfaces; one was consistently spontaneous over the
three. The two others combined both approaches over the three interfaces.

Interview analysis let us map these approaches to different subgoals in exploration. The analyti-
cal approach concerns exploration of the interface at a parameter level: “The strategy is to test [each
knob] one by one to try to grasp what they do”, one participant said. The goal of exploration is then
related to building a mental map of the parameters to learn how to navigate in the design space.
The spontaneous approach concerns exploration of the design space at a creative level: ‘T moved
the knobs more brutally and as a result of serendipity I came across into something different, that I
preferred for other reasons...”, another participant said. The goal of exploration is then related to
discovering new parameter states leading to inspiring parts of the design space.

Discovery is critical to parameter space exploration. “Once [the knobs] are isolated, you let your-
self wander a bit more...”, one participant analysed. Surprise is also important: “To explore is to be
in a mental state in which you do not aim at something precise”, one participant said. Interestingly,

Zhttps://cycling74.com/products/max/.
Shttps://forum.ircam.fr/projects/detail/mubu/.
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Fig. 3. Two user exploration strategies with a 12-dimensional parametric interface: Analytical (top) vs. spon-
taneous (bottom).

we observed that participants often used words related to perceptual aspects rather than technical
parameters. ‘I like when you can get a sound that is... um... Consistent, like, coherent. And at the
same time, being able to twist in many different ways. This stimulates imagination, often”, one partic-
ipant said. Two participants mentioned that forgetting the parametric interface may be enjoyable
in this sense: ‘T appreciate an interface that does not indicate [... ], that has you go back into sound,
so that you are not here reading things, looking at symbols...”, one participant said.

All participants reported being hindered in their exploration by the parameter inputs of the
three interfaces. As expected, the more parameters the interface contained, the larger the design
space was, and the harder it was to learn the interface. “For me, the most important difficulty is
to manage to effectively organise all things to be able to re-use them.”, one participant said. Time
must be spent to first understand, then to memorize the role of parameters, taking into account
that their role might change along the path of exploration. This hampers participants’ motiva-
tion, often restraining themselves to a subspace of the whole design space offered by the tool:
“after a while I was fed up, so I threw out some parameters”, one participant said about the 12-knob
interface.

Participants discussed the limitations encountered in the study in light of their real-world prac-
tice with commercial interfaces. Two participants mentioned using automation functions to sup-
port parameter space exploration. Such functions include randomizing parameter values, automat-
ing parameter modification over time, or creating new control parameters that “speak more to your
sensibility, to your ears, than to what happens in the algorithm’, to cite one of the participants. Two
participants also use factory presets to start exploration: ‘T think that in some interfaces they are
pretty well conceived for giving you the basis of a design space. Then it’s up to you to find what pa-
rameters to move”, one participant said. Two participants said that the graphical user interfaces,
including parameter names, knob disposition, and visual feedback on sound, may help them man-
age to lead exploration of large parameter spaces.

4.2 Part 2: RL Agent Prototype

Results in first part let us identify different user approaches to parametric interface exploration, as
well as different problems encountered in high-dimensional parameter spaces. In the second part,
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Fig. 4. Our RL agent prototype. Users can only provide feedback to the agent, which acts on hidden VST
parameters.

we were interested in having participants test the RL technology in order to scope design ideas
and possible breakthroughs in relation to exploration.

4.2.1 Implementation. We implemented an initial prototype for our pilot study, that we pro-
pose to call “RL agent” for concision purposes. The prototype lets users navigate through different
sounds by only communicating positive or negative feedback to an RL agent. The agent learns
from feedback how to act on the underlying synthesis parameters in lieu of users (see Figure 4).
Formally, the environment is constituted by the VST parameters, and the agent iteratively acts on
them. Computationally, we considered the state space S = {S} constituted by all possible param-
eter configurations S = (sq, . .., S,), with n being the number of parameters, and s; € [Smin, Smax]
being the value of the i*" parameter living in some bounded numerical range (for example, s; can
control the level of noise normalized between 0 and 1). We defined the corresponding action space
A(S) = {A} as moving up or down one of the n parameters by one step a;, except when the selected
parameter equals one boundary value:

+a; fors; €lsmin, Smax|
A(S) =14 +a; fors; =spmin
—a; fors; = smax

An e-greedy method defines the autonomous exploration behaviour policy of the agent—how
it may take actions by exploiting its accumulated feedback while still exploring unvisited state-
action pairs [97]. From a given state, it consists in having the agent take the best action with
probability ¢, and reciprocally, take a random action with probability 1 — ¢. For example, ¢ = 1
would configure an always exploiting agent—i.e., always taking the best actions based on accu-
mulated feedback—, while ¢ = 0 would configure an always exploring agent—i.e., never taking
into account the received feedback. Our purpose in this study was to examine whether different
exploration—exploitation trade-offs could map to different user approaches to exploration. Finally,
we propose that the user would be responsible for generating feedback. We directly mapped user
feedback to the environmental reward signal R associated with a given state-action pair (S, A). The
resulting formalization—where an agent takes actions that modify the environment’s state based
on feedback received from a user—defines a generic interactive RL problem.

We implemented Sarsa, which is a standard algorithm to learn how to act in many different
environment state, i.e., for each given parameter configuration [97]. It differs from multi-armed
bandits, which learns how to act in one unique environment state [68]. Importantly, as evoked
in Section 1, Sarsa was designed to learn one optimal behaviour in relation to the goal of a task.
Our purpose in this study was to scope the pros and cons of such a standard RL algorithm for
human exploration tasks, judging how it may influence user experience, and framing how it may be
adapted by design to support exploration. The convergence of the Sarsa algorithm in an interactive
setup where users provide feedback was evaluated in a complementary work [86].
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Fig. 5. One of our four participants using a two-button interface to communicate binary feedback to the RL
agent prototype in the pilot study.

We used the largest VST-based 12-parameter space of the first part (n = 12) as the environment
of our prototype. Because Sarsa is defined on discrete state spaces, each parameter range was
discretized in three normalized levels (s; € {0,0.5,1},a; = 0.5;0 < i < n). Our goal was to inves-
tigate how the RL agent could help exploration of large perceptual spaces. As such, we opted for
more (12) parameters and less (3) discrete levels to design the largest perceptual space suitable for
our RL-agent prototype. Although this would have been a design flaw in a perceptual experiment
on typical VSTs, this allowed for obvious perceptual changes, which was required to investigate
feedback-based interaction with a large variety of sounds.

4.2.2  Procedure. Our participants were asked to find and create a sound preset of their choice by
communicating feedback to three different agents with different exploration behaviours (respec-
tively, ¢ = 0; ¢ = 1; and ¢ = 0.5). Sound was synthesized continuously, in a sequential workflow
driven by the agents’ algorithmic functioning. At step ¢, participants could listen to a synthesized
sound, and give positive or negative feedback by clicking on a two-button interface (Figure 5). This
would have the agent take an action on hidden VST parameters, modify the environment’s state
and synthesize a new sound at step ¢ + 1. Participants were only told to give positive feedback
when the agent took an action getting them closer to a sound that they enjoy, and negative feed-
back when it moves away from it. They were not explained the agent’s internal functioning, nor
the differences between the three agents. Each session started with a fully-untrained agent. The
starting state for ¢ = 0 was randomly selected. Agent order was randomized; we asked participants
to spend between 5 and 10 minutes with each.

4.2.3  Analysis. We logged all participant actions in the graphical user interface. It consisted in
timed onsets for positive feedback on the one hand, and negative feedback on the other hand. We
also logged parameter temporal evolution to observe how the RL agent would act on parameters
following user feedback. We used structured observation to study participants’ interviews and
discussions led at the end of the pilot study.

4.2.4  Reactions. All participants reported forgetting synthesis parameters to focus on the gen-
erated sound. The simplicity and straightforwardness of the new interface benefited their explo-
ration. “There’s always this sensation that finally you are more focused on listening to the sound itself
rather than trying to understand the technology that you have under your hands, which is really great,
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yeah, this is really great”, one participant said. Participants went on voluntarily for 5.9 minutes with
each of the agents on average (o = 1.3).

The computational framework defined by RL was well understood by all participants. “There’s
somewhat a good exploration design [sic], because it does a bit what you do [with the parametric
interface], you move a thing, you move another thing...”, one participant said. All participants en-
joyed following agents’ exploration behaviours, mentioning a playful aspect that may be useful
for serendipity. Three participants in turn adapted their exploration to that of the agent: “you con-
vince yourself that the machine helps you, maybe you convince yourself that it is better... and after
you go on exploring in relation to this”, one participant said. Interestingly, one participant that was
skeptical about partnering with a computer changed his mind interacting with the RL agent: “We
are all different, so are they”, he commented, not without a touch of humor.

4.2.5 Uses of Feedback. Descriptive statistics informed on how participants used the feedback
channel. Three participants gave feedback every 2.6 seconds on average (¢ = 0.4), globally bal-
ancing positive with negative (average of 44.8% positive, o = 0.02). The fourth participant gave
feedback every 0.9 seconds on average (o = 0.07) which was mostly negative (average of 17.2%
positive, o = 0.02). All participants reappropriated the feedback channel, quickly transgressing
the task’s instructions toward the two-button interface to fulfil their purposes. One participant
used feedback to explore agents’ possible behaviours: “Sometimes you click on the other button,
like, to see if it will change something, [... ] without any justification at all”, he commented. Another
used the “-” button to tell the agent to “change sound”. Two participants also noticed the difference
between feedback on sound itself, and feedback on the agent’s behaviour: “there’s the 1 don’t like’
compared to the sound generated before, and the Tdon’t like it at all’, you see”, one of them said.

4.2.6  Breakdowns. Rapidly, though, participants got frustrated interacting with the RL agent.
All participants judged that agents did not always reacted properly to their feedback, and were
leading exploration at the expense of them: “sometimes you tell T don’t like’, T don’t like’, T don’t
like’, but it keeps straight into it! (laughs)”, one participant said. Contrary to what we expected,
participants did not expressed a strong preference for any of the three tested agents. Only one
participant noticed the randomness of the exploring agent, while the three other participants could
not distinguish the three agents. This may be caused by the fact that the Sarsa algorithm was
not designed for the interactive task of human exploration. Reciprocally, this may be induced
by experiential factors due to the restricted interaction of our RL agent prototype, e.g., preventing
users to undo their last actions. Finally, two participants also complained about the lack of precision
of the agent toward the generated sounds. This was induced by the tabular method that we used
with the Sarsa algorithm, which required to discretize the VST parameter space.

4.2.7 Design Implications. Participants jointly expressed the wish to lead agent exploration.
They suggested different improvements toward our RL agent prototype:

—Express richer feedback to the agent (e.g., differentiating ‘T like” from I really like”)

— Control agent path more directly (e.g., commanding the agent to go back to a previous state,
or to some new unvisited state in the parameter space)

—Improve agent algorithm (e.g., acting more precisely on parameters, reacting more directly
to feedback)

—Integrate agent in standard workspace (e.g., directly manipulating knobs at times in lieu of
the agent)

Interestingly, one participant suggested moving from current sequential workflow (where the
agent waits for user feedback to take an action on the environment’s state) to an autonomous
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Fig. 6. Co-Explorer workflow. Users can have the agent explore parameters autonomously, communicating
feedback and state commands to influence agent’s actions. Reciprocally, they can directly explore parameters
by hand, using a standard parametric interface. Users may be free to switch between these interactions
modalities throughout their exploration.

exploration workflow (where the agent would continuously take actions on the environment’s
state, based on both accumulated and instantaneous user feedback). Three participants envision
that such an improved RL agent could be useful in their practice, potentially allowing for more
creative partnerships between users and agents.

5 CO-EXPLORER

Our pilot study led us to the design of a final prototype, called Co-Explorer. We decided to first
design new generic interaction modalities with RL agents, based on users’ reactions with both
parametric interfaces and our initial prototype. We then engineered these interaction modalities,
developing a generic deep RL algorithm fostering human exploration over learning one optimal
behaviour, along with a new specific interface for sound design.

5.1 Interaction Modalities

Our initial prototype only employed user feedback as its unique interaction modality. This lim-
ited our participants, who suggested a variety of new agent controls to support exploration. We
translated these suggestions into new interaction modalities that we conceptualized under three
generic categories: (1) user feedback; (2) state commands; and (3) direct manipulations (as shown
in Figure 6).

5.1.1 User Feedback. Our design intention is to support deeper user customization of the pa-
rameter space, as suggested by our users in the pilot study, who wanted to “express richer feed-
back to the agent”. We thus propose to enhance user feedback as defined in our initial prototype,
distinguishing between guiding and zone feedback. Guiding feedback corresponds to users giving
binary guidance toward the agent’s instantaneous actions in the parameter space. Users can give
either positive—i.e., “keep going in that direction”—or negative guidance feedback—i.e., “avoid go-
ing in that direction”. Zone feedback corresponds to users putting binary preference labels on
given state zones in the parameter space. It can either be positive—i.e., “this zone interests me”—or
negative—i.e., “this zone does not interest me”. Zone feedback would be used for making assertive
customization choices in the design space, while guiding feedback would be used for communi-
cating on-the-fly advice to the learning agent.

5.1.2  State Commands. Additionally, our design intention is to support an active user under-
standing of agent trajectory in the parameter space, as suggested by our users in the pilot study,
who wanted to “control agent path more directly”. We propose to define an additional type of in-
teraction modality—we call them “state commands”. State commands enable direct control of agent
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exploration in the parameter space, without contributing to its learning. We first allow users to
command the agent to go backward to some previously-visited state. We also enable users to com-
mand the agent to change zone in the parameter space, which corresponds to the agent making
an abrupt jump to an unexplored parameter configuration. Last but not least, we propose to let
users start/stop an autonomous exploration mode. Starting autonomous exploration corresponds
to letting the agent act continuously on parameters. As such, in autonomous exploration mode,
the agent does not have to wait for feedback from the user to take actions. Thus, two different
cases arise, at each time step. If the user gives feedback, then the next action is taken on that basis.
If the user does not give feedback, then the next action is taken based on past accumulated user
feedback. Stopping autonomous exploration corresponds to going back to the sequential workflow
implemented in our initial prototype, where the agent waits for user feedback before taking a new
action on parameters.

5.1.3  Direct Manipulation. Lastly, our design intention is to augment, rather than replace, para-
metric interfaces with interactive RL, as suggested by our users in the pilot study, who wanted to
“Integrate agent in standard workspace”. We thus propose to add “direct manipulations” to sup-
port direct parameter modification through a standard parametric interface. It lets users explore
the space on their own by only manipulating parameters without using the agent at all. It can also
be used to take the agent to a given point in the parameter space—i.e., “start exploration from this
state”—or to define by hand certain zones of interest using a zone feedback—i.e., “this example
preset interests me”. Inversely, the parametric interface also allows to visualize agent exploration
in real-time by observing how it acts on parameters.

A last, global interaction modality consists in resetting agent memory. This enables users to start
exploration from scratch by having the agent forget accumulated feedback. Other modalities were
considered, such as modifying the agent’s speed and precision. Preliminary tests pushed us to
decide not to integrate them in the Co-Explorer.

5.2 Deep Reinforcement Learning

As suggested by our users in the pilot study, who wanted to “improve agent algorithm”, we devel-
oped a deep RL agent at three intertwined technical levels. Our approach is based on Deep TAMER
[99] for feedback formalization (Section 5.2.1), and learning algorithm (Section 5.2.2). Our origi-
nal adaptations lie in exploration behaviour (Section 5.2.3), and the integration of our interaction
modalities in the deep RL framework (Section 5.3).

5.2.1 Feedback Formalization. One challenge consisted in addressing the non-stationarity of
user feedback data along their exploration. We implemented Deep TAMER, an RL algorithm suited
for human interaction [99]. Deep TAMER leverages a feedback formalization that distinguishes
between the environmental reward signal—i.e., named, R in the Sarsa algorithm of our initial
prototype—and the human reinforcement signal—e.g., feedback provided by a human user. This
technique, already implemented in the TAMER algorithm [57], was shown to reduce sample com-
plexity over standard RL agents, while also allowing human users to teach agents a variety of
behaviours.

Deep TAMER learns a user’s reinforcement function by maximizing direct user feedback. This
approach differs from conventional uses of RL, which seek to learn an optimal RL-policy by max-
imizing cumulative feedback. Yet, optimal RL-policies or fully-trained agents could not be suited
to our application, since they make the assumption that users would provide consistent feedback
all along the parameter exploration task. Despite being unusual from an RL perspective, we will
show that this interactive RL formulation does suit our HCI application.
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Fig. 7. Schematic representations for exploration behaviour. The color scale depicts the density model for a

two-dimensional state space. Left: changing zone has the agent jump to a state with lowest density. Right:
autonomous exploration has the agent take successive actions toward states with lowest density.

To deal with potential time delays between reinforcement communicated by the human and
state-action paths made by the agent, Deep TAMER uses a weighting function u(t) distributing
credit over the sequence of lastly-visited state-action pairs. We set u(t) similarly to the Deep TAMER
implementation, that is, with a uniform distribution for the rewards received between 4 and
0.2 seconds before the most recent reward—i.e., the most recent user feedback, as formulated in Sec-
tion 5.1. We detail the differences between standard RL algorithms and Deep TAMER in Appendix A.

5.2.2  Learning Algorithm. Another challenge was to tackle learning in high-dimensional para-
metric spaces that are typical of our use case. Deep TAMER employs function approximation [97]
to generalize user feedback given on a subset of state-action pairs to unvisited state-action pairs.
Specifically, a deep neural network is used to learn the best actions to take in a given environment
state, by predicting the amount of user feedback it will receive [71, 99]. The resulting algorithm
can learn in high-dimensional state spaces S = {S} and is robust to changes in discretization a; of
the space. For our application in sound design, we engineered the algorithm for n = 10 parameters.
We normalized all parameters and set the agent’s precision by discretizing the state space in one
hundred levels (s; € [0,1],a; = 0.01;0 < i < n).

A last challenge was to learn quickly from the small amounts of data provided by users during
interaction. Deep TAMER uses a replay memory, which consists in storing the received human
feedback in a buffer D, and sampling repeatedly from this buffer with replacement [99]. This was
shown to improve the learning of the deep neural network in high-dimensional parameter spaces
in the relatively short amount of time devoted to human interaction. We set the hyperparameters
of the deep neural network by performing a parameter sweep and leading sanity checks with the
algorithm; we report them in Appendix B.

5.2.3 Exploration Behaviour. We developed a novel exploration method for autonomous explo-
ration behaviour (see Figure 7). It builds on an intrinsic motivation method, which pushes the
agent to “explore what surprises it” [11]. Specifically, it has the agent direct its exploratory actions
toward uncharted parts of the space, rather than simply making random moves—as in the ¢-greedy
approach implemented in our initial prototype. Our method is based on state visitation density to
push the agent to take exploratory actions toward unknown state zones. It builds a density model
of the parameter space based on an estimation of state-visitation counts, called the pseudo-count
V(S), and a total visit pseudo-count ¢ using a density model Py (S). It then adds a reward bonus, R*,
to the agent, based on the novelty of the state. We parameterized ¢ with an exponential decay in
such a way that its initial value would slowly decrease along user exploration. For our application
in sound design, agent speed in autonomous exploration mode was set to one action by tenths of
a second. We report the hyperparameters set for our exploration method after sanity checks in
Appendix B, and detail the density model in Appendix C.
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Fig. 8. Schematic representations for feedback computation methods. Here, positive feedback is given in
some state situated at the center of the square. Left: guiding feedback is distributed over the p lastly-visited
state-action pairs. Right: zone feedback impacts all state-action pairs potentially leading to the labelled state.

We used tile coding, a specific feature representation extensively used in the RL literature to
efficiently compute and update the density model p4(S) in high-dimensional spaces [97, 100]. To
our knowledge, it has not been used for density estimation or in relation with the pseudo-count
technique as used here. Tile coding as density estimation techniques was preferred over other
techniques such as Gaussian Mixture Models or using Artificial Neural Networks for its low com-
putational cost and ability to scale to higher dimensions. Other exploration methods are based on
Thompson sampling [93], bootstrapping neural networks for deep exploration [74] or by adding
parametric noise to network weights [38]. Approaches such as Thompson sampling have been used
to find an appropriate exploration—exploitation balance but require a prior distribution on the pa-
rameter space. Bayesian methods can even be used to compute an optimal exploration-exploitation
balance but often require much too great computation resources for the high-dimensional state-
action spaces considered in RL.

5.3 Integrating Interaction Modalities in RL

To fully realize our interaction design, we integrated the modalities defined in Section 5.1 within
the RL framework defined in Section 5.2.

5.3.1 User Feedback. We developed generic methods corresponding to user feedback modalities
defined in Section 5.1.1 that we used in the feedback formalization of Section 5.2.1. For guiding
feedback, we assigned user positive or negative feedback value over the p last state-action pairs
taken by the agent (see Figure 8, left), with a decreasing credit given by a Gamma distribution [57].
For zone feedback, we computed all possible state-action pairs leading to the state being labelled
and impacted them with positive or negative feedback received (see Figure 8, right). This enables
to build attractive and repulsive zones for the agent in the parameter space. This reward bonus is
computed using the density model described in Section 5.2.3.

5.3.2  State Commands. We developed generic methods corresponding to state commands de-
fined in Section 5.1.2 using the exploration behaviour defined in Section 5.2.3. Changing zone has
the agent randomly sampling the density distribution and jump to the state with lowest density
(see Figure 7, left). Autonomous exploration mode has the agent take exploratory actions that lead
to the nearest state with lowest density with probability ¢ (see Figure 7, right).

5.3.3 Direct Manipulation. We integrated direct manipulations as defined in Section 5.1.3 by
leveraging the learning algorithm defined in Section 5.2.2. When parameters are modified by the
user, the RL agent converts all parameters’ numerical values as a state representation, taking ad-
vantage of the algorithm’s robustness in changes of discretization. As such, direct manipulation is
almost continuous in the Co-Explorer, which strongly differs from the coarse-grained, three-level
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Fig. 9. Co-Explorer interface.

implementation of our initial RL agent prototype. Finally, reseting agent memory has the RL
algorithm erase all stored user feedback and trajectory, and load a new model.

5.4 Implementation

5.4.1 Agent. We implemented the Co-Explorer as a Python library.? It allows to interface the
deep RL agent to any external input device and output software, using the Open Sound Control
(OSC) protocol for message communication [103]. This was done to enable future applications out-
side the sound design domain. Each of the features described in Section 5.2 are implemented as pa-
rameterized functions, which supports experimentation of interactive RL with various parameter
values as well as order of function calls. The current version relies on TensorFlow [1] for deep neu-
ral network computations. The complete algorithm implementation is described in Appendix D.

5.4.2  Interface. We implemented an interactive interface for our application in sound design
(Figure 9), which integrates all interaction modalities defined in Section 5.1. It builds on Max/MSP,
a visual programming environment for real-time sound synthesis and processing. Standard para-
metric knobs enable users to directly manipulate parameters, as well as to see the agent act on
it in real-time. An interactive history allows users to command the agent to go to a previously-
visited state, be they affected by user feedback (red for negative, green for positive) or simply
passed through (grey). Keyboard inputs support user feedback communication, as well as state
commands that control agent exploration (changing zone, and start/stop autonomous exploration
mode). Lastly, a clickable button enables users to reset agent memory.

6 EVALUATION WORKSHOP

We evaluated the Co-Explorer in a workshop with a total of 12 professional users (5 female, 7 male).
The aims of the workshop were to: evaluate each interaction modality at stake in the Co-Explorer;
and understand how users may appropriate the agent to support parameter space exploration.

The workshop was divided in two tasks: (1) explore to discover, and (2) explore to create. This
structure was intended to test the Co-Explorer in two different creative tasks (described in Sec-
tion 6.1 and 6.2, respectively). Participants ranged from sound designers, composers, musicians
and artists to music researchers and teachers. They were introduced to the agent’s interactive
modalities and its internal functioning at the beginning of the workshop. In each part, they were
asked to report their observations by filling a browser-based individual journal. Group discussion
was carried on at the end of the workshop to let participants exchange views over parameter space
exploration. The workshop lasted approximately 3 hours.

4https://github.com/Ircam-RnD/coexplorer.
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Fig. 10. Our participants testing the Co-Explorer in the evaluation workshop.

6.1 Part 1: Explore to Discover

6.1.1  Procedure. In the first part of the workshop, participants were presented with one pa-
rameter space (see Figure 10 ). They were asked to use the Co-Explorer to explore and discover
the sound space at stake. Specifically, we asked them to find and select five presets to constitute
a representative sample of the space. We defined the parameter space by selecting ten parameters
from a commercial VST. Participants were encouraged to explore the space thoroughly. The task
took place after a 10-minute familiarizing session: individual exploration lasted 25 minutes, fol-
lowed by 5 minutes of sample selection, and 20 minutes of group discussion. Each session started
with a fully-untrained agent.

6.1.2  Analysis. All participant’s actions were logged into a file. These contained timed onsets
for user feedback—i.e., binary guiding and zone feedback—, state commands—i.e., backward com-
mands in the history, changing zone commands and autonomous exploration starting/stopping—
and direct manipulations—i.e., parameter temporal evolutions. We also logged timed onsets for
preset selection in relation to the task, but did not include the five presets themselves into our
analysis. Our motivation was to focus on the process of exploration in cooperation with the Co-
Explorer, rather than on the output of it. We used structured observation to extract information
from individual journals and group discussion.

6.1.3 Results. We first looked at how users employed state commands. Specifically, the au-
tonomous exploration mode, which consisted in letting the agent act cotinuously on parameters
on its own, was an important new feature compared to our sequentiam initial RL agent proto-
type. Participants spent more than half of the task using the Co-Explorer in this mode (total of
13 minutes on average, ¢ = 4.7). Ten participants used autonomous exploration over several short
time slices (average of 50 seconds, o = 25 s), while the two remaining participants used it over one
single long period (respectively 9 and 21 minutes). P5 commented about the experience: Tt created
beautiful moments during which I really felt that I could anticipate what it was doing. That was when
I really understood the collaborative side of artificial intelligence”.

The changing zone command, which enabled to jump to an unexplored zone in the parameter
space, was judged efficient by all participants to find diverse sounds within the design space. It was
used between 14 and 90 times, either to start a new exploration (P1: “Every time I used it, I found
myself in a zone that was sufficiently diametrically opposed to feel that I could explore something
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relatively new”), or to rapidly seize the design space in the context of the task (P12: ‘T felt it was
easy to manage to touch the edges of all opposite textures”). Interestingly, P2 noticed that the intrinsic
motivation method used for agent exploration behaviour “brought something more than a simple
random function that is often very frustrating”.

We then looked at how users employed feedback. Guiding feedback, enabling guidance toward
agent actions, was effectively used in conjunction with autonomous exploration by all partici-
pants, balancing positive with negative (55% positive on average, 0 = 17%). Participants gave vari-
ous amounts of guiding feedback (between 54 and 1,489 times). These strategies were reflected by
different reactions toward the Co-Explorer. For example, one participant was uncertain in control-
ling the agent through feedback: “if the agent goes in the right direction, I feel like I should take time
to see where it goes”, he commented. On the contrary, P1 was radical in his controlling the agent,
stating that he is “just looking for another direction”, and that he uses feedback “without any value
Jjudgement”. This reflects the results described in Section 4.2.4 using our initial RL agent prototype.

Zone feedback, enabling customization of the space with binary state labels, was mostly given
as positive by participants (72%, o = 18%). Two participants found the concept of negative zones
to be counter-intuitive. ‘T was a bit afraid that if I label a zone as negative, I could not explore a
certain part of the space”, P8 coined. This goes in line with previous results on applying interactive
RL in the field of robotics [98]. All participants agreed on the practicality of combining positive
zone feedback with backward state commands in the history to complete the task. “Tlabeled a whole
bunch of presets that I found interesting [... | to after go back in the trajectory to compare how different
the sounds were, and after continue going in other zones. I found it very practical”, P8 reported.
Overall, zone feedback was less times used than guiding feedback (between 10 and 233 times).

Finally, direct manipulation was deemed efficient by participants in certain zones of the design
space. “When I manage to hear that there is too much of something, it is quicker to parametrize
sound by hand than to wait for the agent to find it itself, or to learn to detect it”, P4 analysed. P10
used them after giving a backward state command, saying she “found it great in cases where one
is frustrated not to manage to guide the agent”. P11 added that she directly manipulate parameters
to “adjust the little sounds that [she] selected”. P1 suggested that watching parameters move as
the agent manipulates them could help learn the interface: “From a pedagogical point of view, [the
agent] allows to access to the parameters’ functioning and to the interaction between these parameters
more easily [than without]”. This supports the fact that machine learning visualizations may be
primordial in human-centred applications to enable interpretability of models [3].

6.1.4  Relevance to Task. Three participants wished that the Co-Explorer reacted more quickly
to feedback in relation to the task: ‘T would really like to feel the contribution of the agent, but I
couldn’t”, P12 said. Also, P3 highlighted the difficulties to give evaluative feedback in the consid-
ered task: “without a context, I find it hard”, he analysed. Despite this, all participants wished to
spend more time teaching the Co-Explorer, by carefully customizing the parameter space with user
feedback. For example, five participants wanted to slow the speed of the agent during autonomous
exploration to be able to give more precise guidance feedback. Also, three participants wanted to
express sound-related feedback: “There, [ am going to guide you about the color of the spectrum. |[... ]
There, I'm going to guide you about, I don’t know, the harmonic richness of the sound, that kind of
stuff...”, P4 imagined.

6.2 Part 2: Explore to Create

6.2.1 Procedure. In the second part of the workshop, participants were presented with four
pictures (Figure 11) created by renowned artists and photographers. For each of these four pictures,
they were asked to explore and create two sounds that subjectively depict the atmosphere of the
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Fig. 11. The four pictures framing the creation task of the workshop.

picture. In this part, we encouraged participants to appropriate interaction with the Co-Explorer
and feel free to work as they see fit. We used a new sound design space for this second part, which
we designed by selecting another ten parameters from the same commercial VST than in Part 1.
Individual exploration and sound selection lasted 30 minutes, followed by 20 minutes of group
discussion and 10 minutes of closing discussion. The session started with a fully-untrained agent.

6.2.2  Analysis. All participant actions were logged into a file, along with timed parameter pre-
sets selected for the four pictures. Again, we focused our analysis on the process of exploration
rather than on the output of it. Specifically, for this open-ended, creative task, we did not aim at
analysing how each agent interaction modality individually relates to a specific user intention.
Rather, we were interested in observing how users may appropriate the mixed-initiative workflow
at stake in the Co-Explorer.

We used principal component analysis (PCA) [51], a dimensionality reduction method, to visual-
ize how users switched parameter manipulation with agents. We first concatenated all participants’
parameter evolution data as an n-dimensional vector to compute the two first principal compo-
nents. We then projected each participant data onto these two components to support analysis
of each user trajectory on a common basis. By doing this, relatively distant points would corre-
spond to abrupt changes made in parameters (i.e., to moments when the user takes the lead on
exploration). Continuous lines would correspond to step-by-step changes in parameters (i.e., to
moments when the Co-Explorer explores autonomously). PCA had a stronger effect in the second
part of our workshop. We interpret this as a support to the two-part structure that we designed
for the workshop, and thus did not include analysis of the first part. Finally, we used structured
observation to extract information from individual journals and group discussion.

6.2.3 Exploration Strategies. All participants globally expressed more ease interacting with the
Co-Explorer in this second task. ‘I felt that the agent was more adapted to such a creative, subjective. ..
also more abstract task, where you have to illustrate. It’s less quantitative than the first task”, P9
analysed. User feedback was also reported to be more intuitive when related to a creative goal: “all
parameters took their sense in a creative context. [...] I quickly found a way to work with it that was
very efficient and enjoyable”, P5 commented. Figure 12 illustrates the PCA for two different users.

Qualitative analysis of PCAs let us conceptualize a continuum of partnerships between our par-
ticipants and the Co-Explorer. These could be placed anywhere between the two next endpoints:

—User-as-leader: This workflow involves users first building a customized map of the de-
sign space, then generating variations over these custom presets. In terms of interaction
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1st component 1st component

2nd component
2nd component

Fig. 12. Two types of co-exploration partnerships shown in PCA visualizations of parameter evolution: User-
as-leader (P9, left) and agent-as-leader (P7, right). Relatively distant points correspond to abrupt changes
made in parameters (i.e., to moments when the user takes the lead). Continuous lines correspond to step-
by-step changes in parameters (i.e., to moments when the Co-Explorer takes the lead).

modalities, this consists in first iteratively using changing zone and positive zone feedback
to store custom presets, then either using direct manipulation or short autonomous explo-
rations to generate variations of these presets.

—Agent-as-leader: This workflow involves users letting the Co-Explorer lead most of pa-
rameter manipulation. In terms of interaction modalities, this consists in using autonomous
exploration mode combined with guiding feedback over long periods of time, occasionally
using changing zone or direct manipulation to choose a start point for the Co-Explorer to
lead autonomous exploration.

Our interpretation is as follows. User-as-leader partnership may correspond to user profiles
that approach creative work as a goal-oriented task, where efficacy and control are crucial (P10:
‘T am accustomed... Where I work, if you prefer, we have to get as quick as possible to the thing
that works the best, say, and I cannot spend so much time listening to the agent wandering around”).
Reciprocally, agent-as-leader partnership may correspond to user profiles that approach creative
work as an open-ended task, where serendipity is essential for inspiration (P5: I did not try to look
for the sound that would work the best. I rather let myself be pushed around, even a bit more than
in my own practice”). Some participants did not stabilize into one single partnership, but rather
enjoyed the flexibility of the agent. “Tt was quite fun to be able to let the agent explore, then stop,
modulate a bit some parameters by hand, let it go and guide it again, changing zones too, then going
back in the history... Globally, I had the impression of shaping, somewhat... I found it interesting”,
P11 coined.

Agent memory was handled with relevance to various creative processes towards the pictures.
Seven participants disposed all four pictures in front of them (P7: “to always have them in mind.
Then, depending on the agent’s exploration, I told myself ‘hey, this sound might correspond to this
picture™). Three participants focused on one picture at a time, “without looking at the others”. Four
participants never reset the memory (P11: “my question was, rather, in this given sonic landscape,
how can I handle these four pictures, and reciprocally”), and three participants reset agent memory
for each of the different atmospheres shared by the pictures. Overall, participants benefited from
partnering with the Co-Explorer in parameter space exploration: “It’s a mix of both. I easily man-
aged to project a sound on the picture at first glance, then depending on what was proposed, it gave
birth to many ideas”, one participant said.

6.2.4 Toward Real-World Usages. All participants were able to describe additional features for
the Co-Explorer to be usable in their real-world professional work environments—examples are,
among others, connection to other sound spaces, memory transfer from one space to another,
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multiple agent memory management or data exportation. They also anticipated creative uses for
which the Co-Explorer were not initially designed. Half of the participants were enthusiastic about
exploiting the temporal trajectories as actual artifacts of their creation (P6: “What I would find super
interesting is to be able to select the sequences corresponding to certain parameter evolution, or playing
modes. [...] It would be super great to select and memorize this evolution, rather than just a small
sonic fragment”). Finally, two participants further imagined the Co-Explorer to be used as musical
colleagues—either as improvisers with which one could “play with both hands” (P2), or as “piece
generators” (P6) themselves.

7 DISCUSSION

Our process of research, design and development led to contributions at three different levels: (1)
conceptual insight on human exploration; (2) technical insight on RL; and (3) joint conceptual and
technical design guidelines on machine learning for human creativity.

7.1 Conceptual Insight

7.1.1  From Exploration to Co-Exploration. Our work with interactive RL allowed for observing
and characterizing user approaches to parameter space exploration, and supported it. While ma-
nipulating unlabelled parametric knobs of sound synthesizers, participants alternated between an
analytical approach—attempting to understand the individual role of each parameter—and a spon-
taneous approach that could lead to combinations in the parameter space that might not be guessed
with the analytical approach. While interacting with a RL agent, participants tended to alternate
the lead in new types of mixed-initiative workflows [47] that we propose to call co-exploration
workflows. User-as-leader workflow was used for gaining control over each parameter of the design
space. Agent-as-leader workflow allowed to relax users’ control and provoke discoveries through
the specific paths autonomously taken by the agent in the parameter space. Importantly, the ben-
efit of interactive RL for co-exploring sound spaces was dependent on the task. We found that
this co-exploration workflow were more relevant to human exploration tasks that have a focus
on creativity, such as in our workshop’s second task, rather than discovery. Therefore, we believe
that this workflow is well-suited in cases where exploration is somehow holistic (as in the cre-
ative task) rather than analytic (as in the discovery task where the goal is to understand the sound
space to find new sounds). In a complementary work, described in Appendix E, we were able to
validate this hypothesis, by proving that guiding the RL-agent better supports user creativity than
simply using a standard parametric interface.

7.1.2  Methodology. Our user-centred design approach to interactive RL and exploration al-
lowed us to rapidly evaluate flexible interaction designs without focusing on usability. This pro-
cess let us discover innovative machine learning uses that we may not have anticipated if we had
started our study with an engineering phase. The simple, flexible, and adaptable designs tested in
our first pilot study (parametric vs. RL) could in this sense be thought as technology probes [50].
Working with professional users of different background and practices—from creative coders to
artists less versed in technology—was crucial to include diverse user feedback in the design pro-
cess. Our results support this, as many user styles were supported by the Co-Explorer. That said,
user-driven design arguably conveys inherent biases of users. This is particularly true when pro-
moting artificial intelligence (Al) in interactive technology [7, 15]. As a matter of fact, alongside
a general enthusiasm, we did observe a certain ease among our professional users for express-
ing tough critiques, at times being skeptical on using Al, especially when the perception of the
algorithm choice would contradict their spontaneous choice. Yet, the two professional users that
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took part to both our pilot study and workshop found the use of Al as welcome, testifying of its
improvement along the development process.

7.1.3  Evaluation. Lastly, evaluation of RL tools for creativity remains to be investigated more
deeply. While our qualitative approach allowed us to harvest thoughtful user feedback on our
prototypes’ interaction modalities, it is still hard to account for direct links between agent compu-
tations and user creative goals. Using questionnaire methods, such as the Creativity Support Index
[17], may enable to measure different dimensions of human creativity in relation to different al-
gorithm implementations. As a first step towards this direction, we report a preliminary summary
that maps some of participants’ quotes in our evaluation workshop to Creativity Support Index
dimensions in Appendix F. Also, focusing on a specific user category could also allow more precise
evaluation in relationship to a situated set of creative practices and uses. Alternatively, one could
aim at developing new RL criteria that extends standard quantitative measures—such as conver-
gence or learning time [97]—to the qualitative case of human exploration. Research on interactive
supervised learning has shown that criteria usually employed in the field of machine learning may
not be adapted to users leading creative work [34]. We believe that both HCI and machine learning
approaches may be required and combined to produce sound scientific knowledge on creativity
support evaluation.

7.2 Technical Insight

7.2.1  Computational Framework. Our two working prototypes confirmed that interactive RL
may stand as a generic technical framework for parameter space exploration. The computational
framework that we proposed in Section 4.2.1, leveraging states, actions and rewards, strongly char-
acterized the mixed-initiative co-exploration workflows observed in Section 6.2—e.g., making small
steps and continuous trajectories in the parameter space. Other interactive behaviours could have
been implemented—e.g., allowing the agent to act on many parameters in only one action, or using
different a; values for different action sizes—to allow for more diverse mixed-initiative behaviours.
Alternatively, we envision that domain-specific representations may be a promising approach for
extending co-exploration. In the case of sound design, one could engineer high-level state features
based on audio descriptors [85] instead of using raw parameters. This could allow RL agents to
learn state-action representations that would be independent from the parameter space explored—
potentially allowing memory transfer from one parameter state space to another. This could also
enable agent adaptation of action speed and precision based on perceptual features of the param-
eter space—potentially avoiding abrupt jumps in sound spaces.

7.2.2  Learning Algorithm. RL algorithmic functioning, enabling agents to learn actions over
states, was of interest for our users, who were enthusiastic in teaching an artificial agent actions
by feedback. Our deep RL agent is a novel contribution to HCI research compared to multi-armed
bandits (which explore actions over one unique state [68]), contextual bandits (which explore in
lower-dimensional state spaces [59]), and BO (which explores states at implicit scales [89]). We
purposely implemented heterogeneous ways of teaching with feedback based on our observations
of users’ approaches to parameter space exploration, which extends previous implementations
such as those in the Drawing Apprentice [22]. We also decided to have the agent maximize direct
user feedback (for which Deep TAMER was adapted [99], as opposed to Sarsa [97]), rather than to
optimize one general RL policy. Indeed, our observations in the pilot study suggested that exploring
users may not generate one goal-oriented feedback signal, but may rather have several sub-optimal
goals. They may also make feedback mistakes, act socially toward agents, or even try to trigger
surprising agent behaviours over time. In this article, we focused on qualitative evaluation of the
learned policies to provide a proof of interest of interactive RL from an HCI perspective. At time
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of writing, we know of no way to provide quantitative evaluation of the interactive learning of
such policies with an exploring user from a machine learning perspective. We believe that such
evaluation methods do constitute a matter of research beyond the scope of this article, which is
currently an emerging topic in RL [46]. Beyond agent customisation, future research may address
agent generalisation to other sessions or users, for example having users start a session with a
partially-trained agent instead of fully-untrained.

7.2.3  Exploration Behaviours. The exploration behaviours of RL agents were shown promising
for fostering creativity in our users. Both ¢-greedy and intrinsic motivation method were adapted
to the interactive case of a user leading exploration. One of our users felt that intrinsic motiva-
tion had agents behave better than random. In a complementary work [86], we confirmed that
users perceived the difference between a random agent and an interactively-learning RL agent.
Interestingly, what they perceive may be more related to the agent’s global effect in exploring
the parameter space, rather than the difference between various implementations of agent ex-
ploration. Future work may investigate how user perception of agent exploration may relate to
specific implementations of exploration methods. Complementary to such an approach, future
work may study co-exploration partnerships in real-world applications to inquire co-adaptation
between users and agents over longer periods of time [70]. On the one hand, users could be ex-
pected to learn to provide better feedback to RL agents to fulfil their creative goals—as it was shown
in interactive approaches to supervised learning [34]. On the other hand, agents could be expected
to act more in line with users by exploiting larger amounts of accumulated feedback data—as it
is typical with interactive RL agents [97]. A more pragmatic option would be to give users full
control over agent epsilon values—e.g., using an interactive slider [59]—to improve partnership in
this sense.

7.3 Guidelines for Designing with Machine Learning in Creative Applications

Based on our work with RL, we identified a set of design challenges for leading joint conceptual
and technical development of other machine learning frameworks for creative HCI applications.
We purposely put back quotes from our participants in this section to inspire readers with insights
on Al from users outside our design team.

7.3.1  Engage Users with Machine Learning. The Co-Explorer enabled users to fully engage with
RL computational framework. Users could explore as many states, provide as much feedback, and
generate as many agent actions as they wanted to. They also had access to agent memory, be
it by navigating in the interactive history, or by reseting the learned behaviour. In this sense,
they had full control over the algorithmic learning process of the agent. This is well articulated
by a participant, whose quote can be reported here: ‘T did not feel as being an adversary to, or
manipulated, by the system. A situation that can happen with certain audio software that currently use
machine learning, where it is clear that one tries to put you on a given path, which I find frustrating—
but this was not the case here”.

These observations suggest that user engagement at different levels of machine learning pro-
cesses may be essential to create partnering flows [75]. That is, users should be provided with
interactive controls and simple information on learning to actively direct co-creation. This goes
in line with previous works studying user interaction with supervised learning in creative tasks
[3], which showed how users can build better partnerships by spending time engaging with al-
gorithms [34]. Careful interaction design must be considered to balance full automation with full
user control and aim at creating flow states among people [21]. Aiming at such user engagement
may also constitute a design opportunity to demystify Al systems, notably by having users learn
from experience how algorithms work with data [32].
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7.3.2  Foster Diverse Creative Processes. Our work showed that the Co-Explorer supported a
wide diversity of creative user processes. Users could get involved in open-ended, agent-led ex-
ploration, or decide to focus on precise, user-led parameter modification. Importantly, none of
these partnerships were clearly conceptualized at the beginning of our development process. Our
main focus was to build a RL agent able to learn from user feedback and to be easily controllable
by users. In this sense, the Co-Explorer was jointly designed and engineered to ensure a dynamic
human process rather than a static media outcome. As a matter of fact, we report one participant’s
own reflection, which we believe illustrate our point: “What am I actually sampling [from the pa-
rameter space]? Is is some kind of climate that is going to direct my creation afterwards? [... ] Or am
I already creating?”.

This suggests that supporting the process of user appropriation may be crucial for building cre-
ative Al partnerships. Many creative tools based on machine learning often focus on engineering
one model to ensure high performance for a given task. While these tools may be useful for creative
tasks that have a focus on high productivity, it is arguable whether they may be suited to creative
work that has a focus on exploration as a way to build expression. For the latter case, creative Al
development should not focus on one given user task, but should rather focus on providing users
with a dynamic space for expression allowing many styles of creation [82]. The massive training
datasets, which are usually employed in the Machine Learning community to build computational
creativity tools, may also convey representational and historical biases among end users [96]. In-
teractive approaches to machine learning directly address this issue by allowing users to intervene
in real-time in the learning process [33].

7.3.3  Steer Users Outside Comfort Zones. The Co-Explorer actively exposed the exploration be-
haviour of RL to users. This goes in opposition with standard uses of these algorithms [14], and
may provoke moments where agents behaviours may not align with users creative drive [20]. Yet,
it managed to build “playful”and “funny” partnerships that led some users to reconsider their ap-
proach to creativity, as one participant confessed: “At times, the agent forced me to try and hear
sounds that I liked less—but at least, this allowed me to visit unusual spaces and imagine new possi-
bilities. This, as a process that I barely perform in my own creative practice, eventually appeared as
appealing to me”.

This suggests that Al may be used beyond customisation aspects to steer users outside their com-
fort zones in a positive way. That is, designers should exploit non-optimal algorithmic behaviours
in machine learning methods to surprise, obstruct, or even challenge users inside their creative
process. Data-driven user adaptation may be taken from an opposite side to inspire users from
radical opposition and avoid hyper-personalization [8]. Such an anti-solutionist [12] approach to
machine learning may encourage innovative developments that fundamentally reconsider the un-
derlying notion of universal performance commonly at stake in the field of machine learning and
arguably not adapted to the human users studied in the field of HCL It may also allow the build-
ing of imperfect Al colleagues, in opposion to “heroic” Al colleagues [27]: being impressed by the
creative qualities of an abstract artificial entity may not be the best alternative to help people de-
velop as creative thinkers [81]. The Co-Explorer fairly leans toward such an unconventional design
approach, which, in default of fitting every user, surely forms one of its distinctive characteristics.

Several machine learning frameworks remains to be investigated under the light of these
human-centred challenges. Evolutionary computation methods [37] may be fertile ground for
supporting user exploration and automated refinement of example designs. Active learning
methods [88] may enable communication flows between agents and users that go beyond positive
or negative feedback. Dimensionality reduction methods for interactive visualization [69] may
improve intelligibility of agent actions in large parameter spaces and allow for more trustable
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partnerships. Ultimately, combining RL with supervised learning could offer users with the best
of both worlds by supporting both example and feedback inputs. Inverse RL [2] may stand as
a technical framework supporting example input projection and transformation into reward
functions in a parameter space.

8 CONCLUSION

In this article, we presented the design of a deep RL agent for human parameter space exploration.
We worked in close relationship with professional creatives in the field of sound design and led
two design iterations during our research process. A first pilot study let us observe users interact-
ing with standard parametric interfaces, as well as with an initial interactive RL prototype. The
gathered user feedback informed the design of the Co-Explorer, our fully-functioning prototype,
for which we led joint design and engineering for the specific task of parameter space exploration.
A final workshop allowed us to observe a wide range of partnerships between users and agents,
in tasks requiring both quantitative, media-related sampling and qualitative, creative insight.

Our results raised contributions at different levels of research, development and design. We de-
fined properties of user approaches to parameter space exploration within standard parametric
interfaces, as well as to what we called parameter space co-exploration—exploring in cooperation
with a RL agent. We adapted a deep RL algorithm to the specific case of parameter space explo-
ration, developing specific computational methods for user feedback input in high-dimensional
spaces, as well as a new algorithm for agent exploration based on intrinsic motivation. We raised
general design challenges for guiding the building of new human-Al partnerships, encouraging
interdisciplinary research collaborations [77] that value human creativity over machine learning
performance. We look forward to collaborating with researchers, developers, designers, artists,
and users from other domains to take up the societal challenge of designing partnering Al tools
that nurture human creativity.

APPENDIX A

The TAMER [57] and Deep TAMER [99] algorithms can be seen as value-based algorithms. They
have been applied in settings that allow to quickly learn a policy on episodic tasks (small game
environments or physical models) and aim to maximise direct human reward. This opposed to
the traditional RL training objective to maximise the discounted sum of future rewards. These
algorithms learn the human reward function R using an artificial neural network and construct
a policy from R taking greedy actions. In addition, to accommodate sparse and delayed rewards
from larger user response times, the algorithms include a weighting function u(t) to past state
trajectories and a replay memory in the case of Deep TAMER. Specifically, while traditional RL
algorithms aim to optimise the mean-square error (MSE) loss

MSE = [Ryy1 +yq(Ses1, Arr1, We) — CI(St,At,Wt)]Z, (1)

with R, the reward at time ¢, y the discount rate, and ¢q(S;, A;, w;) the computed state-action value
function with parameters w, (Deep) TAMER aims to optimise

MSE = u(t)[R; — R(S;,A;)]? (2)

with R; and u(t), respectively, the user-provided feedback and weighting function at time ¢, and
R(S;,A;) the average reward.
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APPENDIX B

Table 1. Hyper-parameters for Deep TAMER (Left) and the Co-Explorer Exploration Behaviour (Right)

Deep neural network [99] | Agent [99] Exploration [11,99] | Density g ()
# hidden layers = 2 state dim. n = 10 TporaTon L e.n51 Y Py’

- - e decay = 2000 # tiles = 64
# units per layer = 100 si€[0,1],0<i<n —

- - estart = 0.1 tile size = 0.4

batch size = 32 a; =0.01,0<i<n

- cend =0.0 C =0.01[11]
learning rate o = 0.002 reward value |R| =1 ton T 00 F=10]

ion freq. = z =
replay memory D = 700 reward length = 10 acion ™4
APPENDIX C

The exploration behaviour implemented in the Co-Explorer is based on the notion of optimistic
exploration (the assumption that the unknown is good for the agent) and the addition of an ‘ex-
ploration bonus’ to the reward. As shown in [11], this exploration bonus can be based on an es-
timation of state-visitation counts called the pseudo-count V(S) and a total visit pseudo-count &
using a density model py(S). Formally, one calculates the total reward with bonus R as

. / 1
Rf =R, +p TGy (©)

with )
V(St) = ﬁﬁqﬁ(st) (4)
L=ps(S)
o= — 20045 5)

by (St) = pg(St)
with f and C pre-defined constants. We used tile-coding to estimate a density model py(S) over
the high-dimensional state spaces considered in our work.
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APPENDIX D

ALGORITHM 1: Deep TAMER with exploration bonus and user controls for estimating R() ~ R()

Input: reward function R(S, A, w), policy 7() as e—greedy with exponential decay, reward distribution
function Env_dist(R) = R exp(~t),0 < t < Riengen;
Initialise: weights w = 0, average-reward R = 0, s;(t = 0) = 0.5 for 0 < i < n and
At = 0) = ”(S(t = 0))’ Xj = 0,0<j< Rlength;
while running do // Start autonomous exploration mode
Take action A; and observe next state Sy 1;
Select new action As+1 ~ 7(*|S¢+1);
Store (S¢+1,Ar+1,0) in reward length vector x (R;41 stored as 0);
Update density model p();
Observe reward as R;+1;
St St+1;
A — Apsas
if R#0andt > Rjepgsp then // Train on user feedback + exploration bonus
Compute guiding feedback x = Env_dist(R);
Store x in D;
Compute Risq using SGD [99] and x;
else if |D| > 2 = batchsize then // Train on past user feedback
Dy+1 = random sample from D;
Compute Rit1 using SGD [99] and D13

elseif 1 > Rjep4¢p then // Train on exploration bonus
‘ Compute Ry 41 using SGD [99] and R*;

while Paused do // Stop autonomous exploration mode, allow direct manipulation
‘ agent.get_currentstate();

end

if Change_zone then // Change zone state command

for i in range(nsamples) do
Randomly sample state s;;
Evaluate predictiongain(s;) = log(ps+1(si)) — log(ps(si));
end
St = argmax(predictiongain(s;));
if Zone_feedback then // Zone feedback computation
Soo = x[0] and Aoy = Zone_feedback;
for i in range(Rjeng:n) do
for j in range(|S|) do
Take action A;j and observe state S;j;
Store Sjj in Dyi1;
end
end
Compute Resq using SGD [99] and Dy +1;
D —DUDyy1;

end
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APPENDIX E

In a complementary work, we validated the success of our deep RL method for human parame-
ter exploration, by proving that guiding the Co-Explorer better supports user creativity than sim-
ply using a standard parametric interface. We recruited 14 participants (aged between 22 and
42 years old; 3 Female and 11 Male) with varying background in sound design (such as sound
engineering students, (post-)doctoral researchers in computer music, sound engineers and IT re-
searchers/developers).

Procedure

Participants were asked to explore a parameter sound space by successively using two types of
interfaces: standard parametric interface, and guiding feedback to the Co-Explorer. The succession
of interfaces was set automatically by our experimental setup, which alternated each interface
three times in a row (P—C—P—C—P—C). This alternation was chosen to remove bias towards user
preference of an interaction type resulting from knowledge of the timbral space. Each interface
was shown to participants during 5 minutes, which made the experiment last 18 minutes. The
experiment was preceded by a short interface demonstration. We defined the parameter space by
selecting ten parameters from a commercial VST. Participants were also asked to save an arbitrary
number of varied sounds they appreciated during exploration, following their creative will.

Analysis

At the end of the experiment, participants received a questionnaire in which they were asked to
evaluate their experience and the interaction itself, followed by a brief and informal discussion
of their experience. Participants were asked to compare the parametric interface and Co-Explorer
using scores between contrasting adjectives using a Likert scale of 1-5 (see Table 2). These ad-
jectives were based on the user questionnaire developed by Laugwitz et al., identifying several
adjectives representing criteria in classes such as perceived ergonomic quality, perceived hedonic
quality (hedonic quality focuses on non-task oriented quality aspects, for example the originality
of the design or the beauty of the interface) and perceived attractiveness of a product [64]. We
replaced the counterpart adjective for “understable” by “non-understable”, instead of “ambiguous”
as proposed in [64]. Our motivation is that we wanted to insert a negative adjective as a positive
characteristic for creativity.

Table 2. Contrasting Adjectives Used to Measure and Compare the Experiences
of Guiding the Co-Explorer and Using a Standard Parametric Interface in Human
Parameter Exploration (Based on [64])

Classes Criteria Adjectives
Hedonic quality Novelty Conventional Inventive
Dull Creative
Stimulation | Demotivating Motivating
Boring Exciting
Ergonomic quality | Perspicuity | Confusing Clear
Ambiguous Understandable
Dependability | Obstructive Supportive
Efficiency Inefficient Efficient
Attractiveness Annoying Enjoyable
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Results

We performed a two-factor analysis of variance with replication using the scores of each partici-
pant for all adjectives, for both the Co-Explorer and parametric interface setups. We found that the
Co-Explorer had significantly better hedonic qualities than the parametric interface [F = 4.95,p <
0.05]. This may validate our hypothesis that the Co-Explorer successfully supports user creativity
in parameter exploration. Alternatively, the parametric interface proved to be more ergonomic
than the Co-Explorer [F = 22.1,p < 0.001]. This is not a surprise, as all participants reported ex-
perience in using parametric interfaces for sound design. Last and interestingly, attractiveness for
both interfaces modes was not significantly different [F = 2.23, p = 0.15]. This may suggest that
the Co-Explorer did not benefit from a positive effect due to its novelty compared to the parametric
interface.

APPENDIX F
Table 3. Preliminary Summary that Maps Participants’ Quotes in the
Evaluation Workshop to Creativity Support Index Dimensions [17]
Collaboration (not relevant here)
Enjoyment P5 (Section 6.1.3, first paragraph)
P11 (Section 6.2.3, third paragraph)
Exploration P1 (Section 6.1.3, second paragraph)
P12 (Section 6.1.3, second paragraph)
Expressiveness P2 (Section 6.1.3, second paragraph)
P8 (Section 6.1.3, fourth paragraph)
P5 (Section 6.2.3, first paragraph)
Immersion P9 (Section 6.2.3, first paragraph)
P5 (Section 6.2.3, third paragraph)
Results Worth Effort P4 (Section 6.1.3, fifth paragraph)
P10 (Section 6.1.3, fifth paragraph)
P5 (Section 6.2.3, first paragraph)
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