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ABSTRACT

User interfaces typically feature tools to act on objects and rely on
the ability of users to discover or learn how to interact with them.
Previous work in HCI has used the Theory of Affordances to explain
how users understand the possibilities for action in digital envi-
ronments. A complementary theory from cognitive neuroscience,
Technical Reasoning, posits that users accumulate abstract knowl-
edge of object properties and technical principles known as me-
chanical knowledge, essential in tool use. Drawing from this theory,
we introduce interaction knowledge as the “mechanical” knowledge
of digital environments. We provide evidence of its relevance by
reporting on an experiment where participants performed tasks in
a digital environment with ambiguous possibilities for interaction.
We analyze how interaction knowledge was transferred across two
digital domains, text editing and graphical editing, and conclude
that interaction knowledge models an essential type of knowledge
for interacting in the digital world.
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« Human-centered computing — HCI theory, concepts and
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1 INTRODUCTION

User interfaces usually provide digital tools that mediate users’
actions on objects [10], e.g., the styling tools (bold, italics) for for-
matting text in a word processor. These tools are often designed
to work with a specific digital object type, e.g., a color palette for
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text, a different color palette for shapes and yet another one for
tables. Therefore, users need to discover what tools are available
for a particular task and learn [33] their nuances before they can
put them to use on objects. Designers try to facilitate learning and
discovery by using signifiers [31], which rely on the knowledge that
users already have or can readily transfer to a digital environment.
A similar approach is the use of metaphors of physical objects [11]
— such as the well-known “desktop metaphor” pioneered by the
user interface of the Xerox Star [24] — with the expectation that
users will transfer knowledge from the physical world. These cues
are challenging to design [33] and can lead to misinterpretations
or “mismatches” [11] with the actual possibilities for action that
the interface offers, e.g., believing that one could copy and paste a
window to duplicate it. Moreover, humans are able to use physical
objects in ways beyond those for which they were designed, e.g.,
using the surface of a physical desk for rolling dough or the trash
can as a door stop, whereas their digital counterparts are mostly
limited in their versatility by design.

Osiurak et al. [35] posit that, besides knowledge of how to ma-
nipulate objects, human tool use relies on the ability to perform
technical reasoning. Technical reasoning is based on mechanical
knowledge [35], i.e., abstract knowledge of object properties and
technical principles that are used to run “mental simulations” for
determining the appropriate interactions among tools and objects
to transform those objects. For example, mechanical knowledge
would allow a user to tell that a paintbrush can be used to apply
paint on a novel surface, just from having incorporated a basic un-
derstanding of the interactions between the paint, the paintbrush
and the surface, i.e., paint adheres to rough surfaces and the brush
transfers the excess liquid to another surface. Moreover, technical
reasoning based on mechanical knowledge explains the use of ob-
jects beyond the scope of their design, i.e., for unusual uses [35]
such as using the paintbrush for sweeping.

Previous work in HCI [37] has found that, similar to what hap-
pens with physical objects, users can make unusual uses of digital
tools, suggesting that such behavior can be modeled by a technical
reasoning process. More generally, computer users have acquired a
series of principles about user interfaces that they transfer to other
interfaces, resembling the transfer of mechanical knowledge. For
example, both beginner and savvy computer users have expecta-
tions about digital text input, i.e., what happens when we insert
a character, delete it, select it, etc. Arguably, these expectations
shape the knowledge that users transfer from past experience when
confronted with a novel interface. However, while previous work
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in HCI has focused on the transfer of knowledge from our physical
reality into digital environments, we are not aware of work that
has characterized our specific knowledge about the digital world.

Inspired by the concept of mechanical knowledge from technical
reasoning, we introduce the concept of interaction knowledge as
abstract knowledge about digital tools and objects, and about the
possibilities for interaction among them. With mechanical knowl-
edge, tool use is driven by abstract knowledge of physics principles
affecting physical objects; with interaction knowledge, digital tool
use is driven by knowledge of the principles that govern digital envi-
ronments. In other words, interaction knowledge is the knowledge
used to perform technical reasoning in the digital world. To explore
this concept, we study two expressions of interaction knowledge
using a novel digital environment and an experimental protocol
that investigates the effect of priming the participants’ interaction
knowledge of WIMP interfaces.

After reviewing related work and introducing the concept of
interaction knowledge, we describe the experiment and report on
the results. We conclude with a discussion on the implications of
this work and avenues for future work.

2 RELATED WORK

We review literature about how users accumulate and transfer
knowledge about interfaces, focusing on how to make sense of
the possibilities for action with tools in the digital world using
affordances, signifiers and past experience. We also review previ-
ous work on analogical reasoning and technical reasoning, which
ground our work on interaction knowledge.

2.1 Designing Affordances

The Theory of Affordances [17] posits that animals can infer the
possibilities for action with physical objects in relation to their body
capabilities, i.e., discover affordances of the environment. Gibson
[17] describes the perception of affordances as a mechanism directly
connecting perception and action, i.e., involving no conscious effort
on the part of the individual, such as when a human correctly uses a
hammer without any apparent knowledge of its function. However,
while affordances exist whether they are perceived or not, their
perception relies on the premise that objects possess salient features
that users can perceive [35]. Since their introduction to HCI [30], af-
fordances have been the subject of numerous interpretations about
their meaning and uses in the field [29]. In this regard, Kaptelinin
and Nardi [25] point out the challenges raised by modern technol-
ogy to this theory, even beyond digital environments. As a matter
of fact, modern tools typically lack salient connections between
their controls and the actuators that carry out the corresponding
actions. For example, a power drill may be activated by a trigger
that is internally connected to the drill bit, but such connection may
not be visible to users as it is hidden under the drill’s plastic case.
Furthermore, Osiurak et al. [35] argue that tool use “requires more
than the mere perception of affordances provided by tools” because, in
addition to being able to manipulate them, users need to understand
how a tool interacts with the target object to reach its goal state,
e.g., whether the power drill can make a hole in a given wall.

In digital environments, affordances are frequently brought up to
refer to the functions made available to users [29], e.g., changing the
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color of text or moving up a page. These may be accessible through
widgets such as buttons, palettes or scrollbars. However, digital
objects and tools are not necessarily explicit about their possibilities
for action, i.e., their affordances are not readily perceivable. For
example, Microsoft Word provides different color palettes for text,
highlight and shape color, none of which are interchangeable, and
Adobe Photoshop offers an Eraser tool that can only erase pixel-
based objects, despite the fact that vector-based objects are made
of paths that are also erasable. In both examples, users are required
to know whether the tool will work on a given object, besides
knowing how to operate it.! Therefore, tool-mediated interactions
— both in physical and digital contexts — require knowledge of
interactions between objects beyond the user’s ability to manipulate
them, which affordance perception cannot readily explain.

2.2 Signifiers & Cultural Conventions

Norman [31] coined the term signifier to refer to the cues provided
to users for “communicating how to use the design” [33]. Although
the term has its origins in semiotics, where it is used to refer to icons,
indexes and symbols [15], Norman explicitly differentiates it from
this original meaning and introduces it as a communicative property
of design elements. For example, the looks of a button in a user
interface may signify that it affords clicking or tapping. Signifiers
— in Norman’s sense — should also help users differentiate among
the possibilities for action within interface elements, so as to spot
those that are relevant to the users’ intention [33]. For example,
a dialog box can present many buttons that afford clicking, but
only one may result in closing the dialog. In this case, a designer
may use additional signifiers to reveal each button’s affordance
besides clicking, e.g., adding an OK label or relying on learned
conventions [33] such as a cross for a button that closes a window.
The reliance of signifiers on cultural conventions resonates with
Kaptelinin and Nardi’s account of the effect of culture on computer-
mediated activity [25], extending it to the use of modern technology.
Knowing that a trigger is what activates a power tool (even though
such a connection is not salient) and that drills can be used to pierce
concrete walls is a form of cultural knowledge about technology.
Nevertheless, novel uses of a tool, e.g., the first use of a power drill
as a screwdriver, cannot be explained by cultural background alone.
Although semiotic approaches — such as the use of icons in digital
environments [3] — could serve to indicate possible uses of a tool,
e.g., using an “A” in a color palette button to signal that it changes
the color of any text-based object, the design of icons has its limits
in visual arts and culture themselves. Furthermore, while signifiers
signal knowledge for action in a digital environment, they do not
model such knowledge per se or its use in a cognitive process.

2.3 Using Knowledge from Past Experience

Besides our perceptual and our cultural knowledge, we also accumu-
late knowledge from our observations of and interactions with the
physical world. Computer technology has capitalized on these abili-
ties by enabling, e.g., touch-based input, free-hand gestures [4] and
tangible interactions [41]. This has led to user interfaces that take
advantage of our bodily capabilities, such as pinching an image to

!Scrollbars, on the other hand, communicate their possibility for action more effectively
as they are attached to the window that they affect.
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zoom it or playing games using one’s whole body. These interfaces
are known as Natural User Interfaces (NUIs) [32, 42], in reference
to their closeness with “natural” interactions in the physical world.

Several interaction models for NUIs have been introduced that
are based on our understanding of the physical world. Reality-based
Interaction [22] describes an interaction style based on concepts of
naive physics that aims to make HCI “more like interacting with the
real, non-digital world”. For example, interface objects may incor-
porate notions such as friction or gravity. Blended Interaction [23]
extends the notions of the physical world to incorporate knowledge
acquired when interacting with digital artifacts, thus forming blends
between the physical and digital realities. For example, pinch-to-
zoom is a well-established concept in touch-based interfaces that
we rarely encounter in the physical world.

NUIs thus rely on our existing knowledge of the world, physical
and/or digital. The nature of this knowledge relates to the notion
of intuition. Blackler et al. [8] investigate intuition as the basis for
designing interfaces that build on users’ experience, observing that
past experience is a defining factor for creating intuitive interfaces.
Hurtienne and Israel [21] draw on previous taxonomies of intu-
itiveness to propose their own for tangible user interfaces, focusing
on image schemas, which describe how we understand the world,
and their metaphorical extensions, which describe how that under-
standing can be transferred to other situations. The implication is
that users should be able to find similarities between situations that
prime the appropriate knowledge acquired in the past.

While these models account for the users’ ability to perceive
similarities and make sense of interactions, they do not address
how this knowledge comes to be used in novel ways. Hence, past
experience alone is not sufficient to account for unusual tool use.

2.4 Analogical Reasoning

In line with intuitiveness, humans possess the ability to reason
analogically [18] by identifying similarities between current and
past problems, thus being able to apply “old” solutions to new prob-
lems. Such reasoning is leveraged in interfaces that prompt users to
discover their affordances [11] through analogies with previously
known situations. For example, the desktop metaphor [24] relies
on the analogy of a physical office, with icons representing files,
folders, etc., whose possibilities for interaction can be inferred from
those occurring in the physical world, e.g., documents can be moved
into folders. The same applies to the representations of digital tools
that rely on analogies with objects of the physical world to infer
their uses, e.g., using ink wells [9] for coloring.

Learning by analogy has been studied early on in HCI with text
editing environments [26, 36, 39]. Rieman et al. [38] argue that there
should exist a mapping between the contexts of two digital envi-
ronments in order for users to be able to construct sound analogies,
e.g., transferring towards a new text editing environment. How-
ever, certain affordances can be abstracted beyond a domain. For
example, users can copy and paste across a multiplicity of contexts
where selection is possible. Additionally, analogies between similar
contexts can lead to negative transfer, e.g., the different ways in
which the Tab key works between code editors, word processors,
unformatted text editors, etc.
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Previous work in cognitive neuroscience [35] argues that the
ability to perform analogical reasoning is essential for using novel
physical objects, prompting us to look for a similar process occur-
ring in digital tool use.

2.5 Technical Reasoning

Osiurak et al. [35] posit that humans manage to use tools based
on their ability to perform technical reasoning, a cognitive process
based on analogical reasoning from experience with physical ob-
jects and their interactions. The authors postulate that humans
accumulate mechanical knowledge from their interactions in the
physical world, which takes the form of abstractions of the mechan-
ical principles that are at play between object properties [35]. For
example, one can reason about the cutting principle as the act of
pressing a sharp, elongated and hard object, e.g., a knife, against a
softer, firm target, e.g., an apple.

Technical reasoning relies on abstract knowledge because it does
not require that the tool user recognizes the objective properties of
the tool and the object to recall a previous interaction between them,
but rather to make sense of how the properties in each object relate
to each other according to the mechanical principle in question. In
other words, technical reasoning is only needed when the task at
hand presents a novel component, e.g., the first time that one uses
a mug as a paper weight. This ability is especially useful in situa-
tions where a recognizable tool is not available, leading the user to
resort to technical reasoning so as to find an appropriate object and
mechanical principle to solve the problem, thus producing novel
uses of objects. For example, one could arrive at the conclusion that
a knife can be used as a screwdriver because of its shape and how
it interacts with the screw’s head, even though it is not designed
for that purpose. This hypothesis challenges the notion that hu-
man tool use originates in our use of procedural knowledge [35],
i.e., the learned routines that are specific to the use of tools [2].
Instead, it offers a model somewhat half~way between declarative
and procedural knowledge.

The technical reasoning hypothesis was recently introduced to
HCI in a study [37] presenting evidence that users can perform
technical reasoning to carry out unusual uses of digital tools. In the
reported experiment, the authors observed participants performing
unusual uses of digital tools and found evidence that they elicited
knowledge of digital objects and tools, and of principles that de-
scribe the results of their interactions, which some of them could
associate with past experience. Consequently, computer users seem
to develop a sort of “mechanical” knowledge of the digital world.
However, this work did not focus on the form that this knowledge
takes for interactions in digital environments, and did not specifi-
cally address how unfamiliar interfaces bring participants to use
their acquired knowledge of digital tools.

In summary, several theories have been used to model how users
find the possibilities for action in user interfaces. Technical reason-
ing in particular defines a form of knowledge that enables tool users
to discover how to carry out unusual uses of tools, namely, mechan-
ical knowledge. Based on existing evidence that technical reasoning
is at play when using digital environments, we seek to characterize
a form of “mechanical” knowledge of the digital world that enables
the reasoning process to take place in unfamiliar interfaces.
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3 INTERACTION KNOWLEDGE

We define interaction knowledge as abstract knowledge of the possi-
bilities for interaction in digital environments. Interaction knowl-
edge forms the basis for technical reasoning in digital environments,
in the same way that mechanical knowledge does in the physical
world [35]. Interaction knowledge is abstract in the sense that,
when facing a novel user interface, users perceive surface cues of
possible interactions, such as typing when a cursor blinks, clicking
a color swatch to apply color or knowing that one can minimize
a window in a GUI. These abstractions originate in the principles
that users learn through experience in both physical and digital
environments.

Knowledge of both physical and digital environments has been
shown to help users perform analogical reasoning about digital
interfaces [11]. However, interaction knowledge is of particular
interest for tasks that involve technical reasoning about interactions
in digital environments, i.e., when facing situations that require
novel uses of tools.

Since digital objects follow artificially designed “laws of informa-
tion” rather than the laws of physics, technical reasoning in digital
environments must rely at least partially on abstract knowledge
specific to the digital world. For example, mechanical knowledge
models our understanding of “naive physics” in abstractions such
as the law of gravity, which we use spontaneously even though we
are not necessarily able to put it into words. Similarly, interaction
knowledge models abstract “laws” of digital environments, such as
text being editable when it contains a blinking cursor or windows
having the ability to be minimized, which hardly have an equiva-
lent abstraction in the physical world. Mechanical knowledge and
interaction knowledge may overlap in some of the abstractions
that compose them, in particular when the digital world mimics
the physical one, but there is no reason to believe that one can be
subsumed by the other.

Analyzing user behavior in terms of the principles that users
have acquired and that they perceive as applicable from surface
cues opens the door to a more rigorous approach to interface de-
sign. While some of these principles are already at play in many
interactions such as cursor-based text editing, window manipula-
tion using their sides and corners, or selection highlighting that
suggests copying and pasting, many interactions are still arbitrary
and differ from one environment or one application to the next.
Identifying and applying these principles universally will expand
users’ ability to perform technical reasoning when facing a new
interface or situation, e.g., by using a tool in an unexpected way. It
will also inspire better design guidelines for learnability [19] and
result in more “intuitive” and powerful interfaces by capitalizing
on the users’ past knowledge [8]. Interaction knowledge can be a
useful resource for models such as Blended Interaction [23], Reality-
based Interaction [22] or Instrumental Interaction [5], in that it can
provide the basis for more universal principles for the design of
interfaces, which users can more readily apply when resorting to
technical reasoning.
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4 STUDY: INTERACTION KNOWLEDGE IN
INTERFACE DISCOVERY

This section describes an experiment designed to explore the role of
interaction knowledge in the discovery of an unfamiliar interface.
Our approach consists of inferring the existence of interaction
knowledge from the principles underlying the tools selected by the
participants to interact with objects on the screen. More precisely,

our goal is to observe how different interface cues affect the users’
strategies for manipulating digital objects and draw conclusions
about the kind of interaction knowledge at play.

We created an experimental editor that supports a subset of com-
mon text- and graphics-oriented tools and used separate toolbars
and different selection interactions as cues of the applicability of
these tools. The editor displays a canvas containing words and emo-
jis (Figure 1, left). At first, participants see the canvas and either
a text- or graphics-oriented toolbar, but not both, and are asked
to perform a selection task. Then both toolbars are made available
and the participants are asked to complete a series of editing tasks.

We expect that the initial toolbar, acting as interface cue, will
prime the participants’ knowledge of how to interact with digital
objects as either text or graphics. We consider that a participant is
primed with a given knowledge when they perform one or more
actions that require such knowledge. In other words, by first ex-
posing participants to a specific toolbar, we expect that they will
respond by demonstrating interaction knowledge about objects ac-
cording to the type of that toolbar, regardless of the availability of
the other toolbar. As participants progress through tasks requiring
more effort, we expect them to resort to technical reasoning to solve
the tasks more effectively, thereby eliciting interaction knowledge
primed by the tools that are available from both toolbars.

We summarize the questions addressed by this experiment in
the following hypotheses:

H1: (Priming) Interaction knowledge about text or graphics is
primed by the type of toolbar that the participant first sees,
i.e., a toolbar with text-oriented tools primes the selection
and manipulation of objects as text, while a toolbar with
graphics-oriented tools primes the selection and manipula-
tion of objects as graphical shapes;

H2: (Reasoning) When facing tasks that require more effort, par-
ticipants resort to interaction knowledge about both text and
graphics to exert technical reasoning, i.e., when both types
of tools are available, the perceived effort required by the
task will prompt the participant to use knowledge primed
by the available tools to complete the task more efficiently.

4.1 Task

Participants interact with a content editor that displays monospaced
text characters and emojis, organized in words and visual shapes
on a canvas (Figure 1). This content editor supports interacting
with elements both as if they were text and graphical objects. For
example, a user can select the Highlighter tool in the top toolbar,
which will switch the mouse cursor to an I-beam, letting her select
sequences of characters and insert and delete text as if they were
part of a text document. Conversely, selecting the Pointer tool in
the left toolbar will switch the mouse cursor to an arrow, letting



Interaction Knowledge: Understanding the “Mechanics” of Digital Tools

CHI 23, April 23-28, 2023, Hamburg, Germany

cower | o] Joafell [ ][ L[ [ [-]] |
‘ i | ouner | | —_— Please read carefully and follow the instructions:
* 1. Perform the steps to make the interface look like the document below.
2. Once you complete the task, click the "Next" button.
Remember to think aloud.
Target Document
2 oy a 1 a u
'€ H 1 g a 1 a u
- H i a 1 a u
: a 1 d
y B a 1 4 a s u
y a . : u a 1 CHIi
— o u H e
. u a 1 ~CH i
u a 1 JEH

Finish Viewing task 4 out of 5.
=) Next

Press the "Next" button to move on to the next
document.

Figure 1. The full view of the experimental environment during Task 4. To reproduce the image on the right in optimal time, the participant

should combine text and graphics tools.

her select shapes using rectangular selection and drag and drop
objects as floating shapes on a canvas.

Participants are organized in three groups according to the initial
cues that they receive: Text Group, Graphics Group and Control
Group. Participants in the Text Group and the Graphics Group are
asked to perform a selection of the objects in the canvas, i.e., they
can only highlight text if they are in the Text Group or perform a
rectangular selection or multiple object selection if they are in the
Graphics Group. Participants in the Control Group are presented
the canvas without any toolbar and are not asked to perform a
selection. Then, all participants interact with a version of the editor
that has both text and graphics toolbars enabled, and are asked
to perform 5 tasks corresponding to incremental steps towards a
goal state. These tasks can be carried out using either only graphics
commands, only text commands or a mix of both types, which lets
us evaluate the effect of the environment on the choice of tools that
participants make to complete tasks.

To design the 5 tasks, we ran 11 pilot testing sessions with par-
ticipants from both inside and outside our lab. We tested different
object representations and layouts for the canvas’ content, with the
goal of inducing ambiguous interpretations about the appropriate
interaction, i.e., text-based, graphics-based or other. We decided to
use a mix of text characters arranged as words and emojis scattered
across a grid so as to mix characteristics of both text and graph-
ics environments, suggesting an ambiguous environment when
looking at the canvas alone. This is based on the premise that par-
ticipants are familiar with emojis being included in regular text as
well as text being part of vector-based compositions. We chose the

tools made available in the toolbars based on two criteria: being
recognizable from popular software, e.g., the pointer for moving
graphical objects and the I-beam for typing text, and achieving sim-
ilar visual results between text and graphics, e.g., the paint bucket
and the text highlighter both change the background color property.

The first three tasks (Figure 3a, Figure 3b and Figure 3c) consti-
tute small steps to familiarize the participant with the environment,
such as finding out which tools and shortcuts can be used. The last
two tasks (Figure 3d and Figure 3e), on the contrary, involve more
effort to induce the need to devise strategies and find the tools that
make them less cumbersome.

4.2 Participants

We recruited 37 computer users via calls for participation over
email and social networks, as well as word of mouth from par-
ticipants, until completing 12 participants for each of the three
groups. Candidates were accepted if they self-reported themselves
as knowledgeable about computers. We discarded data from 1 par-
ticipant because of data inconsistencies found after the session?.
Of the remaining 36 participants, 17 self-reported as female and
19 as male. Participants reported on average between 11 and 20
years of experience with text editing, and between 5 and 10 years
of experience with graphical editing. On average, the self-reported
frequency of use of text editing software was “Almost daily use,”
while for graphical editing software it was “A few times a month.

*Data was stored in the participant’s browser and was downloaded and later sent to
the experimenter. For reasons unknown, this participant’s file missed the entire action
log corresponding to the last task.
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Figure 2. The editor in the second phase, when selecting elements for the first time, for the Text Group (a) and Graphics Group (b). The button
corresponding to the selection tool is the only one activated in the toolbar and the participant can only perform a selection according to the
tool. All other tools remain disabled until having to complete tasks (third phase).

4.3 Setup

We implemented the setup to carry out the study remotely. Par-
ticipants ran a local copy of the experimental environment on a
web browser with support for JavaScript. The editor supports a
subset of common text- and graphics-editing commands. At the end
of the session, the environment allowed downloading a JSON file
containing the event logs and answers to the questionnaires,which
the experimenter asked the participant to send via e-mail. The ap-
plication scripts were hosted on a virtual server running on our
lab’s infrastructure.

When carrying out tasks, the interface (Figure 1) is comprised of
a text-based toolbar at the top, a graphics-based toolbar on the left
side and a rectangular canvas in the center. The interface layout
borrows from popular text- and graphics-based editing environ-
ments. A number of tools are shown in a disabled state (grayed out),
and are not actually implemented. These tools were included so as
to make the toolbar consistent with those of familiar environments.
Table 1 shows the tools required to complete the tasks. The text
toolbar includes a Text tool that inserts a text cursor after the last
element in the canvas (in top-to-bottom and left-to-right order)
thus entering into Text mode, allowing the user to type characters
as in a text editing environment. The Highlighter tool works in the
same way as in Microsoft Word: if a selection exists before it is
activated, it applies the current highlighting color to it; otherwise,
it highlights any selection made with the cursor while the tool is
active. Additional functions in the text toolbar resemble familiar
text-oriented toolbars, and activate the Text mode when used: font
family, font size, font style and text color. A separate panel was
also added to the text toolbar to insert emoji icons at the location
of the text cursor. The graphics toolbar includes a Pointer tool for
selecting and dragging objects in the canvas, and a Fill tool to point
and click at objects for changing their background color. Both tools
put the editor into Graphics mode when active.

While in Text mode, the mouse cursor is displayed as an I-beam
when moving across the canvas, except when the Highlighter tool
is selected, in which case it shows the cursor corresponding to the
highlighter. While in Graphics mode, the mouse cursor changes to
that of the Pointer tool or a paint bucket for the Fill tool. Clipboard
commands are made available through browser menus and standard

keyboard shortcuts (cut with Ctrl+X, copy with Ctri+C and paste
with Ctrl+V). When either the text cursor or the pointer are active,
each keep their own clipboard storage so that, for example, an
object copied using the pointer can only be pasted while using the
pointer. The editor does not support history commands for undoing
or redoing changes. This allows for a simpler implementation of the
environment and logging of user actions, as well as capturing more
actions from the participants when they recover from mistakes.

In Text mode, typed characters are inserted sequentially as it
would happen with a regular text editor. Insertions are wrapped
at the right edge of the canvas at the character level. When in
Graphics mode, characters can be dragged around inside and outside
of the canvas. Dropping a character out of bounds will make it
impossible to drag it back inside. When going from Graphics to
Text mode, space and new line characters are added in front of
visible characters as needed to preserve their positions and keep
the behavior consistent with text input3. These characters become
part of the document and are editable in Graphics mode. We made it
possible to drag a character on top of another in Graphics mode. In
such cases, the overlapping characters are considered at the same
position in Text mode, meaning that they will behave as a single
character, e.g., they get deleted as one character.

All elements in the canvas are padded to occupy a square slot
in a grid. Dropping elements in Graphics mode adjusts them to
the nearest slot. All elements are independent from each other, i.e.
characters can be selected individually with either the Pointer tool
or the text cursor, with the exception of overlapping characters in
Text mode. In order to select more than one element, the user can
select elements as text or use the Pointer tool to create rectangular
selections and/or Shift+Click on each element.

The canvas is pre-loaded with initial content comprised of char-
acters arranged in words and emojis. Each goal state is depicted
outside the editor interface (Figure 3) during the task. The initial
state is always that of the previous goal state, regardless of whether
the participant reproduced it in the previous task. This is so that
every participant begins working on a given task under identical
conditions. After completing a task, participants click a Next button

3Since we do not provide alignment tools, such as the ruler in Microsoft Word, it is
not possible to have a character float in the middle of a page without inserting blank
characters before it.
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Table 1. Buttons in the text and graphic toolbars required to complete the tasks.

Text Cursor I

Activates a blinking text cursor at the end of the last character (top-down, left-to-right direction). If graphical

selections are present at the moment of pressing the button, they are cleared. If necessary, spaces and line breaks
are inserted before the elements to preserve the layout from the graphics mode.

Highlighter

Sets the background color of a text selection. If the text cursor is not present at the moment of pressing the button,

it is activated. If graphical selections are present at the moment of pressing the button, they are cleared. If necessary,
spaces and line breaks are inserted before the elements to preserve the layout from the graphics mode.

Pointer [N

Activates the pointer tool to manipulate characters as shapes in a 2D space. If the text cursor is present at the

moment of pressing the button, text selections are cleared and the text cursor is deactivated.

Fill -3

Activates the fill tool to change the background color of individual characters by point-and-click interaction. It is

not possible to color multiple characters by dragging the mouse cursor across them. If the text cursor is present at
the moment of pressing the button, text selections are cleared and the text cursor is deactivated.

outside the editor interface that saves the action log associated with
it. A Finish button next to the Next button allows to complete the
session. If there are any remaining tasks, the session is considered
abandoned and the data collected for that participant is discarded.
This was not experienced during any of our sessions.

4.4 Procedure

We used a between-participant design with one factor (Group)
controlling the type of toolbar and the selection type first presented
to the participant. A session begins by sending the participant a
unique URL corresponding to a unique Id. Using a video conferenc-
ing application with support for screen sharing, participants share
a video stream of the browser window where they open the URL.
Participants read a short introduction that indicates that they will
use a novel digital environment without specifying its purpose.

After pressing a “Continue” button, participants observe the
interface corresponding to their assigned group. All participants
see the canvas with the same content. The Text Group also sees the
text-oriented toolbar and the Graphics Group the graphics-oriented
toolbar, while the Control Group does not see any toolbar. In the first
phase, all participants are asked to describe how they would leave
all the elements in the canvas in a selected state (without actually
performing the selection). Next, in the second phase, participants in
the Text Group and Graphics Group see the Text tool and the Pointer
tool activated, respectively (Figure 2), without the possibility to
switch to another tool nor deactivate the current one. Participants in
both groups are asked to perform the steps to leave all the elements
in the canvas in a selected state. Participants in the Control Group
skip these two phases and proceed directly to the next phase.

In the third phase, all participants are presented with a fully
interactive version of the editor with both its graphics and text
toolbars on the top and left sides of the canvas respectively, and
all implemented features in an enabled state (Figure 1). They then
use the keyboard and mouse to complete 5 tasks requiring them to
replicate a series of images displayed in a panel on the right. When
they are done reproducing the image, they press a “Next” button to
load the image corresponding to the next task. At the beginning of
each task, participants have to select a tool instead of continuing
with the last tool used in the previous task. Participants are asked

to think aloud [20] as they perform actions on the editor and are
encouraged to use any command that they deem useful.

Because of the differences across digital environments, partici-
pants who feel stuck can be assisted. For example, if a participant
attempts to select multiple elements by keeping the Control key
pressed, we indicate that this is possible with the Shift key. We
also give confirmation when a participant expresses that a function
is not present. For example, if a participant attempts to execute
an “Undo” command, we indicate that history commands are not
supported and that fixing mistakes requires reversing the steps
manually or refreshing the browser to start over with the task.

At the end of each task, the experimenter verifies that the result
resembles the goal state before the participant proceeds to the next
task. If noticeable differences are present, participants are asked
whether they are sure that the task is complete, pointing at the
difference in question if they take more than 15 seconds to spot
them. Participants can end the session at any point by pressing a
“Finish” button on the side of the editor (Figure 1) or by closing the
browser window. At the end of the last task, the session is complete
and participants answer a questionnaire about their performance
and past experience with text and graphics editing environments,
with demographic items at the end. Participants then download a
file containing the action logs from all the tasks and the answers to
the questionnaire, and transfer it to the experimenter.

4.5 Data Collection

We recorded audio from the call and video from the participants’
screen. We took notes of the participants’ responses about the type
of steps they took to select content. During the task performance,
we collected action logs including keystrokes of character and meta
keys, toolbar interactions, tool commands on the canvas objects
and clipboard commands Every action includes a timestamp. We
also took notes of the participants’ verbal protocol during the tasks.

We collected answers to the end questionnaire. The question-
naire was divided into three parts: daily experience with text and
graphics editing software, experience with the experimental editor—
assessing the use of 3 tools that were relevant to the task—, their
perception of using text or graphics editing approaches, a self-
reported measure of the prevalence of one approach over the other,
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Figure 3. Screenshots of the tasks during a session.

knowledge of functions from other software that was used for com-
pleting the tasks, and demographic questions. This assessment was
used in connection with the notes from the verbal protocol and
action logs of their performance during the tasks.

All data were referenced by participant number. The experimen-
tal design and data collection were approved by our Institutional
Review Board.

4.6 Data Analysis

We analyzed the selection techniques that the participants used
(SELTECH) and classified them between Text Selection for text-based
techniques, Graphics Selection for graphics-based techniques and
Other Selection for alternative responses. This was coded based on
their answer during the first phase of the procedure, together with
the execution of the action during the second phase. We performed
independence tests to determine whether the participants’ GrRoup
(Text Group, Graphics Group and Control Group) associated with a
particular SELTECH (H1).

Using the action logs of the participants’ tasks, we analyzed the
number of command executions by their type—“text” or “graphics”—
and designated each task’s APPROACH as based on Graphics-only,
Text-only or Mixed commands. We considered an approach to be
Mixed when it more than 5% of the total number of its commands
were of a secondary type, so as to discard unintentional or playful
uses. We did not analyze data from commands that do not modify
objects or the canvas, e.g., selection or change of tool.

Next, we performed independence tests of GRoup and APPROACH
to determine whether the interface cues associated with particular
approaches to complete the tasks (H2), i.e., whether participants
used one type of tool or both to solve a task. This test was carried
out both by aggregating the approaches from all tasks as well as by
testing individually for each task. We also tested correlations be-
tween the reported frequency of use of text- and graphics-oriented
software and the number of text- and graphics-oriented actions
during the tasks, respectively. Finally, we used notes from the ver-
bal protocol and answers to the questionnaire by each participant
to complement the analysis of how past experience affected the
approach used to complete the tasks.

5 RESULTS

We were interested in the priming effect of the toolbar layout on the
selection interaction and on the choice of tools for accomplishing
the tasks. For this purpose, we analyzed the participants’ description
of the selection technique after their initial encounter with the
environment, as well as their action logs during the execution of
the tasks. We complemented our results with observations gathered

Table 2. Count of selection technique class by group.

Selection Technique

Group Text  Graphics Other
Text Group 10 2 0
Graphics Group 1 11 0
Control Group 9 3 0

from our notes of the participants’ verbal protocol and answers to
questionnaires (see supplemental material for additional results).

5.1 Toolbars Primed the Selection Technique

We counted the responses of each type from the description of
the steps to select all the elements in the canvas, according to the
Group. Among those in the Text Group, 10 (83%) described a Text
Selection technique and 2 described a Graphics Selection technique;
among those in the Graphics Group, 11 (92%) described a Graphics
Selection technique and 1 described a Text Selection technique; and
among those in the Control Group, 9 (75%) described a Text Selection
technique and the remaining 3 (25%) described a Graphics Selec-
tion technique. Some participants found it difficult to identify the
environment that was being presented, yet were able to describe
a proper selection technique. For example, P5 (Control Group) de-
scribed the environment as: “maybe a chat room” before proceeding
to describe a text selection technique. Therefore, all participants
described either a text- or graphics-based selection technique.

Table 2 shows the counts for each Group. All expected fre-
quencies are above 5. A Chi-square test of independence4 shows
a statistically significant relation between Grour and SELTECH
(x*(2) = 16.4250, p = .0003). We ran post-hoc pairwise compar-
isons using Fisher’s exact test due to the small values in the sub-
tables. Results show significant differences in SELTECH between the
Text Group and the Graphics Group (p = .0019) and the Graphics
Group and the Control Group (p = .0055) but not between the Text
Group and the Control Group (p = 1.000) — all p-values corrected
with Bonferroni’s technique for 3 comparisons.

These results suggest that the presence of either a text or graphics
toolbar had an effect on the participants’ decision to perform a text-
or graphics-based selection of the objects respectively, thus support-
ing our priming hypothesis (HI) that the participants’ knowledge
of how an interaction must be carried out was primed by the type
of the toolbar. However, when observing the differences between

4I-'ollowing [1], we use the Chi-square test of independence only if 80% or more of the
frequencies in the table are above 5 and none of them are below 1.
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Figure 4. Frequencies of each approach among participants across tasks for each priming group (see Table 3 for the numbers).

Table 3. Count of Text-only (T), Graphics-only (G) and Mixed (M) ap-
proaches by task (see Figure 4 for a visualization).

Task Number
1 | 2 | 3 | 4 | 5
APPROACH
Group GMTGMTGMTIGMTIGMT
Text Group 3 1 8|2 2 8|4 1 7|2 3 712 3 7
GraphicsGroup 8 1 3|19 1 2|5 4 3|9 1 2[3 8 1
Control Group 8§ 0 4|7 2 3|4 1 7|5 3 4|3 7 2

toolbar conditions, we found that performing a graphical selection
associated with displaying the graphics toolbar, while there was no
significant difference in selection technique between displaying the
text toolbar and not displaying any toolbar. In other words, both in
the absence of toolbars and the presence of only the text toolbar,
most participants assumed that a text selection technique would
be appropriate. This could be due to bias caused by the contents of
the canvas resembling text more than graphics content.

5.2 Interaction Cues Primed the Choice of Tools

We analyzed the action logs from the five editing tasks in the third
phase of the session to extract the types of tools per task and par-
ticipant. We designated an APPROACH for each task based on the
tool types used, classified as Text-only when tools were primarily
text-oriented, Graphics-only when tools were primarily graphics-
oriented and Mixed when tools included a significant share of both
typess. Table 3 shows the overall counts of the approaches by task
and Group. Figure 4 illustrates the counts in Table 3, showing that
priming with a text toolbar and text interaction (Text Group) asso-
ciated with more participants using text approaches on every task.
However, there is no such visible evidence of a difference in the use
of tool types between the Graphics Group and the Control Group,
i.e., when users had graphics cues vs. no interaction cues before
performing the tasks. This seems to contradict our previous assess-
ment that participants in the Control Group may have perceived the
content as text more often than as graphics.

%5% or more of the tools used being of the secondary type.

5.2.1 Priming Worked for Aggregated but not for Individual Tasks.
We wanted to confirm our visual assessment of the difference in
APPROACH between the Text Group and the Graphics Group. We
tabulated the data from the five tasks and aggregated it for the two
separate groups, the Text Group and the Graphics Group (60 obser-
vations per group, i.e., 12 participants performing 5 tasks each). All
the expected values in the tabulated frequencies are above 5. The
chi-square test of independence shows that there is a statistically
significant association between the participant’s group and the
approach used to complete the task (y(2) = 24.466, p < .005). An
analysis of the standardized residuals shows that for the overall
tasks, the Text Group had a large deviation in APPROACH (values
> 2 for small tables [1]), reflected by more Text-only approaches
(4.84) and fewer Graphics-only approaches, while the opposite oc-
curred for the Graphics Group, for which the deviation was reflected
by more Graphics-only approaches (3.92) and fewer Text-only ap-
proaches. This suggests that, in general, participants preferred using
tools of a type according to the priming of their group.

Having observed an effect when aggregating all five tasks, we
then analyzed the data on a task-by-task basis. After tabulating the
results for each of the five tasks separately (12 observations per
group), the expected values were under 5 in all tables, making the
chi-square test of independence unsuitable. The Freeman-Halton’s
extension of Fisher’s exact test [16] shows that in tasks 2 (p = .013)
and 4 (p = 0.019) there were statistically significant associations
between the participant’s group and the approach used. An anal-
ysis of the standard residuals for these two tasks shows that the
deviations occurred in the same directions as for the overall case
but with a less pronounced effect, due to the fact that residuals for
individual tasks were smaller than for the overall tasks. Therefore,
while tasks 2 and 4 followed the general pattern of using tools
associated with the priming of the participants’ group, tasks 1, 3
and 5 show no significant association with a tool type, suggesting
that participants sought new tool types during their execution, in
line with our reasoning hypothesis (H2).

5.2.2  Participants in the Control Group were Not Primed. We ana-
lyzed the effect of priming participants on APPROACH by comparing
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Number of Switches

Figure 5. Histogram of the number of participants who switched
tool types by the number of times and task. This chart leaves out
three participants in Task 4 who switched tool types 8, 16 and 18
times respectively, and two participant in Task 5 who switched 7 and
8 times respectively.

data from the Text Group and Graphics Group combined (primed
group) with the Control Group (non-primed group). We combined
the aggregated observations of the five tasks of the Text Group and
Graphics Group in one category (primed, 120 observations), while
keeping those of the Control Group in another (non-primed, 60
observations). All expected values in the table are above 5. A chi-
square test shows no statistically significant association between
the primed status and the approach used by participants (p = .582).
The same result obtains with the Freeman-Halton extension to
Fisher’s exact test for each task (p > .05 in all tests). This suggests
that participants in the control group (12) did not use significantly
more text, graphics or mixed approaches than participants who
were intentionally primed (24), thus supporting the fact that the
control group was not primed by our interaction cues.

To sum up these results, for tasks 2 and 4, as well as for all tasks
aggregated, groups primed with text cues had an increased use
of text-only approaches, while groups primed with graphics cues
had an increased use of graphics-only approaches, in line with
our priming hypothesis (H. 1)°. However, the differences between
tasks 2 and 4 on the one hand and tasks 1, 3 and 5 on the other
can be attributed to the participants’ increased perceived effort” of
the latter, prompting them to exert technical reasoning and thus
resorting to their interaction knowledge about available tools to
complete them, thereby supporting our reasoning hypothesis (H2)
for these three tasks. Moreover, the approaches used by the control
group were not significantly different from those used by the other
two groups combined, suggesting that when not primed by our
toolbars, participants did not show a particular preference for one
approach over the other. This supports the idea that participants in
the control group were not exposed to interaction cues that could
disambiguate the type of editing that they could carry out, and
therefore did not elicit a priming effect when performing the tasks.

*We repeated these two analyses for 0%, 10%, 15%, 20%, 25% and 49% as additional
thresholds defining Mixed approaches. The chi-square tests of independence showed
statistically significant associations between the two conditions and APPROACH
(p < .05) for all thresholds. For individual tasks, we found similar significant results of
the Fisher’s exact test for all thresholds except for 49% where an additional significant
association between the two conditions and APPROACH was found in task 1.

"The difficulty of the task was first associated with the number of objects to change,
but was then revised after observing the participants.
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5.3 Most Participants Worked on One
Representation at a Time

Most participants did not switch tool type (Figure 5) during each
task, i.e. most of them chose a representation at a given point in
the task, e.g., edit as text, and used tools tied to it exclusively until
reaching the goal state. On the other hand, two extreme cases
changed tool type 16 and 17 times, both during task 4. For tasks
1, 2 and 3, most participants stayed on the same tool type from
beginning to end. One possibility is that they assumed that the first
representation that they found was the only possible one.

Another explanation lies in the fact that tasks 1, 2 and 3 were
relatively easy to complete with either text-only or graphics-only
tools, whereas tasks 4 and 5 were cumbersome to complete without
using tools of both types. Figure 5 shows that task 5 has the most
number of participants switching tool types once, consistent with
our observation of participants using the Fill tool in the beginning
and later finding the Highlighter tool more convenient to carry out
the task. In summary, with the exception of task 5, most participants
chose to stick to one representation, suggesting that they assumed
that only one representation was correct within a task.

5.4 Some Participants’ Approaches were based
on Familiarity or Convenience

When asked about their motivations, P1, P8, and P15 (who used
text approaches), and P9, P13, P16 and P29 (who used graphics
approaches) stated that the interaction cues made them think of the
problem according to the environment, in line with our priming
hypothesis (H1). However, some participants did not seem to be
influenced by priming, in line with our reasoning hypothesis (H2).

For example, P31 (Graphics Group), was the only participant
primed with graphics cues who performed all tasks exclusively
with text-based tools, that is, the exact opposite of the intended
priming. When asked about this, he said: “I mostly use text editors
[in my daily life], rather than graphics editors. That’s why I'm more
comfortable with text and use [it] whenever I can.” In particular,
during task 3, P31 sought a tool to change the background color
of text characters, stating: “I will use [the highlighter tool] because
I think [the fill tool] fills the [graphics] shapes,” thus identifying
the task as text editing and then choosing tools according to what
seemed appropriate.

Conversely, P17 (Text Group) was the only participant primed
with text cues who performed all tasks exclusively with graphics-
based tools. When queried about this fact, she said: “Even if initially
saw it as a text editor, after using it — and even more so with the left
toolbar — I found it more comfortable to edit as if I was ‘dragging’
images instead of chunks of text.”

P34 (Graphics Group) was an example in between these two. He
performed tasks 1, 2, 4 and 5 using exclusively graphics tools and
decided to explore an alternative way in task 3, using the Highlighter
tool after having tested the Fill tool. However, although he had
discovered and used the Highlighter tool to complete task 3, he
carried out task 5 using exclusively the Fill tool, thus completing the
task rather inefficiently (because it required pointing and clicking
at every single character). When asked about this, he said: “[I] found
a way that worked and stuck with it, plus, I have a big bias towards
graphical design.”
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We found significant positive correlations between the reported
frequency of use of graphics-oriented software and the number of
actions executed using graphics tools in tasks 1 (r = .49, p = .002)
and 2 (r = .60,p < .001), and for all tasks aggregated (r = .42,p =
.010), but not for tasks 3, 4 and 5 (p > .05). Correlations between fre-
quency of use of text-oriented software and the use of text-oriented
tools were not significant (p > .05). Despite the significant effect of
interaction cues on the approaches in general, some participants
ignored these cues and used the approach that seemed familiar or
convenient to them, suggesting that past experience had a signifi-
cant effect on the interaction knowledge used.

5.5 Some Mixed Approaches Originated in
Seeking the Right One

Some participants expressed having used tools for their perceived
efficiency. For example, P27 (Graphics Group) recognized the possi-
bility to use text tools in addition to graphics tools, but preferred
using the latter because “It was just easier to stay within the graphics
mode as it allowed for easier copy and paste rather than moving the
hand between my trackpad and keyboard all the time.”

P23 (Text Group) saw the tasks as “games,” trying to find the
“correct” answer. When reaching task 5, even before checking what
changes were needed, she stated: “I'm sure there is an easy way.” She
tested different ways to color multiple backgrounds at the same time
using the Fill tool based on her experience with multiple selection,
which was not supported in our environment. After coloring 2
lines using the Fill tool on each character individually, she thought
of text selection as a way to select multiple objects and tried to
combine it with the Fill tool, causing the text selection to be cleared
(when switching back to a graphic tool). She performed a second
text selection revealing her thought process about the environment:
“this is just text,” after which she used the Highlighter tool for the
remaining lines, resulting in a mixed approach.

P23 is representative of other participants such as P10, P20, P21
and P26 who were concerned about finding the “right” approach
and explored the interface by focusing on the tools that would
“solve” the task, apparently ignoring which actions were supported
by the objects. This suggests that these participants paid more
attention to the tools and their effects, rather than on whether the
objects were supported by the tools.

5.6 All Participants Identified Other Digital
Environments as Sources of Knowledge

All participants gave one or more examples of applications that in-
spired their decisions on how to complete the tasks. 24 participants
mentioned Microsoft Word as their inspiration for text editing
strategies. When it came to graphics editing strategies, 13 men-
tioned Microsoft Paint, 7 Adobe Illustrator, 7 Adobe Photoshop
and 5 Microsoft PowerPoint. In particular, P7 recalled Adobe Page-
Maker at the end of the session because of its mixed text- and
graphics-oriented tasks—referring to the Pointer tool as the lead
cue—, although this participant used only text-based tools.

P18 was quick to associate Microsoft Word with the use of the
Highlighter tool and clipboard commands, but had difficulty de-
scribing how a text application influenced the way in which she
operated the text cursor, stating: “These are things that you don’t

CHI 23, April 23-28, 2023, Hamburg, Germany

know that you know... they are just there.” When asked to clarify,
she added (emphasis ours): “Let’s assume I used knowledge about
the [text] cursor [from Word] but... it is simply something that I know
that is there, like knowing how to walk.” In general, participants
did not mention the source of their knowledge about how to op-
erate with text, except mentioning the highlighting and clipboard
commands. However, it is evident that they did not spend much
time understanding how to operate with text despite it being a
novel environment, suggesting that procedural knowledge from
past experience was brought in. In the next section, we discuss
these results in terms of interaction knowledge.

6 DISCUSSION

Our results suggest that the experimental environment first primed
the participants with their interaction knowledge of text or graph-
ical objects. This is reflected in their ability to predict a correct
selection technique simply by observing the interface, and later by
their overall preference for tool types that match the priming of the
first toolbar that they were presented. However, some participants
mixed tools of both types and some did not even use any tools
related to the priming that we intended, supporting the hypothe-
sis that they exerted technical reasoning to solve those tasks and
used interaction knowledge for both text and graphical objects. The
performance of participants in the control group suggests that the
interface offered no particular cues about the type of tools that
could be used with the objects, evidenced by the absence of pref-
erence for a tool type in this group. In this section, we discuss
the limitations of our work and implications of its results for the
transfer of interaction knowledge in digital environments.

6.1 Limitations

The purpose of this work was to find evidence that participants elicit
interaction knowledge about text and graphics in a simple WIMP
interface. In this regard, it is but a first step to validate interaction
knowledge as a concept in HCL

As with most controlled experiments, the need to control for
sources of variability resulted in a design that does not represent a
standard setting, where users would find assistance by searching
on the Internet or asking peers. The experimental setting may
also have resulted in biases in the participants’ behavior such as
trying to produce the result that they think is correct rather than
what they would normally do, or acting differently because they
are being observed (Hawthorne effect [27]). This is notably the
case when the mismatch between cues and possibilities for action
limits the expression of procedural knowledge [2], as evidenced by
participants wanting to perform actions they are accustomed to
but that were not measured or supported by our environment.

Also, while our design considered that the effort involved in each
subsequent task was proportional to the number of changes that it
required, this cannot be mapped directly to a measure of difficulty.
Instead, the level of difficulty more likely depends on the tools and
approach chosen by each participant.

Finally, we were interested only in the use of commands that
would help participants complete the task while ignoring those that
did not have an effect. We may therefore have missed interaction
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knowledge that manifests itself when participants try to use a tool
that has no effect in the particular context.

While the qualitative analysis of the results mitigates some of
these limitations, more experimentation is required to consolidate
our results with other substantial examples of interaction knowl-
edge. In particular, further experimental designs should expand
the set of available commands to those from other applications
beyond text- and graphics-editing, such as photo editing, video
editing, CAD, etc. Further work should also involve other modern
interaction styles in order to identify additional abstract principles
of interaction knowledge. For example, one could investigate the
abstract interaction principles relevant to Reality-based Interac-
tion [22] or Blended Interaction [23].

6.2 Users Accumulate and Transfer Interaction
Knowledge about Digital Environments

Most participants showed a significant preference, across all tasks,
for the type of tool matching the priming for their group, despite
having both sets of tools available. This suggests that these partici-
pants inferred the possibilities for action on these digital objects
through the cues that we initially provided in the interface (tool-
bars and feed-forward from selection), which elicited interaction
knowledge related to this type of tool. Although different tasks
were proposed — some of which involving repetitive steps — the
need to find alternative tools rarely resulted in these participants
switching their tool type of choice for the remainder of the task.
This is evidenced by the small number of times that participants
switched tool types in most tasks. This resonates with functional
fixedness [14], a cognitive bias that limits a participant’s ability
to use a tool in a non-familiar way or to use a different tool to
solve a task. In our case, participants may have assigned a single
function to the tools they recognized and associated it with the
type of object (text or graphics) rather than with a property (e.g.,
color). Some participants also seemed to be stuck at personal choice,
adopting a “satisficing” [12, 40] approach. They recognized that
they preferred to use what they knew would solve the problem,
despite it not being the most efficient method, e.g., using the Fill
tool to change the background color of characters instead of the
Highlighter tool. Both functional fixedness and satisficing are likely
to inhibit technical reasoning, thereby reducing the participant’s
use of their interaction knowledge.

In a few cases however, participants found that they could use a
secondary type of tool that normally would not be compatible with
an object that works with the primary one, e.g., using text selection
on graphics. In those cases we can infer that technical reasoning
was at play. We observed participants who tried to find a tool that
created the desired effect (i.e., change a property), without paying
attention to the fact that such a tool would normally not be compat-
ible with an object for which tools of a different type could be used,
e.g., it would be impossible to use Microsoft Word’s Background Fill
tool to change the text’s highlight color. This suggests that these
participants were focusing on the property that they wanted to
change rather than following learned procedures or erratically test-
ing different tools until finding a match. Arguably, such behavior
is compatible with participants exerting technical reasoning and
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applying their interaction knowledge about the principles related
to changing object properties that they associated with the tools.
In summary, while a majority of participants focused on the
object types to make their decisions about tools, a minority had mo-
ments where they based their decisions only on what the tools do.
Both behaviors are examples of knowledge of either tool or object
from past experience being transferred to an unfamiliar or novel
environment. The former behavior is representative of procedural
knowledge, where little conscious effort is involved to execute an
action [2], whereby the latter is representative of the kind of trans-
fer of knowledge that occurs in a technical reasoning process [35].
In this case, technical reasoning comes as an assistive cognitive
mechanism when facing a tool-based problem when the procedure-
based solution is not available. This work therefore supports the
notion that interaction knowledge is an essential form of knowl-
edge for interaction in digital environments, similar to mechanical
knowledge of the physical world, but for the digital world.

6.3 Implications for HCI

Interaction knowledge draws from mechanical knowledge, which
models abstract knowledge about physical objects and principles
in the physical world [35]. Mechanical knowledge is the basis for
technical reasoning, which itself is based on the ability to reason
analogically about object-based interactions. Humans’ ability to
reason analogically is not limited to physical interactions, as has
already been shown in previous studies training computer users
for novel interfaces [36, 38]. By modeling the knowledge about
digital interactions that gets transferred analogically as interaction
knowledge, we can inform the design of future interactions to build
on existing knowledge that users have of the digital world and how
to signify them, as well as to motivate the characterization of the
principles behind this knowledge.

Following these characterizations, users of a novel interface
could build on their past experiences to recognize what digital tools
can and cannot do with objects. Additionally, rather than being used
as a general or sparse body of knowledge, interaction knowledge
could be compartmentalized according to the paradigms, platforms
or devices that are being considered. For example, we could talk
about WIMP interaction knowledge, touch-based interaction knowl-
edge or VR interaction knowledge to refer to the principles and
objects that are central to these interaction styles.

Furthermore, the notion that interaction knowledge describes
relationships between digital tools and objects supports the devel-
opment of alternatives to the application-centric paradigm [6, 34].
Rather than forcing users to accept the tool set that comes with
and is limited to each application, interaction knowledge leverages
the human cognitive ability to understand tool-based interactions
and to use tools and objects in unusual ways, thus expanding the
scope and power of interactive systems. This is notably explored
by Maudet [28], who shows that limitations imposed by current de-
sign tools result in practices that extend beyond these applications’
environments, e.g., using external digital images as color sources
to be imported with an eyedropper tool.

Designing digital tools — rather than applications — would en-
courage users to engage more deeply with their digital environ-
ments by incorporating these tools into their workflows as they
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see fit based on their effects and by facilitating their appropriation
as we do with physical tools [13]. For example, users could create
a document by switching between graphics-editing tools for im-
ages and drawings and text-editing tools for writing, all within the
same editing environment. This form of ownership of digital tools
has already been explored through concepts such as Instrumental
Interaction [5], observing for example that a color picker should
change the color of anything having a color property regardless of
the application in which it is found [7].

Our results support the development of user interfaces centered
around the existing interaction knowledge of digital tools and the
possibilities for action that they create towards digital objects, as
well as the development of new digital tools based on principles
underlying new interaction knowledge. In other words, interaction
knowledge of digital tools can serve the development of a novel
property-based interaction style that lets users recognize the possi-
bilities for action of the environment by the properties that the tools
affect and whether the target objects feature these properties [37].

7 CONCLUSIONS & FUTURE WORK

Inspired by mechanical knowledge from the Technical Reasoning
hypothesis [35], we introduced interaction knowledge as abstract
knowledge of digital tools and the possibilities for interaction with
objects that they enable. Interaction knowledge is the knowledge
we acquire from experience in digital or physical environments
and that we transfer to interact in the digital world so that we can
exert technical reasoning. We designed a novel WIMP interface
and an experimental protocol to explore priming interaction knowl-
edge with interaction cues. Using different toolbars and selection
interactions, we primed participants with either text or graphics
cues and analyzed their strategies to solve a series of tasks in an
environment where both types of interactions were possible with
its digital objects.

Our results show a significant preference of participants, across
tasks, for the type of tool corresponding to the specific interac-
tion cues that were presented, regardless of the perceived effort
involved to perform the task. However, we also observed some
participants switching between tool types to find more efficient
ways to complete the tasks, and seemingly unaware of the novelty
of such a possibility. This suggests that they were able to exert
technical reasoning based on their interaction knowledge about the
properties that the tools changed, rather than rely on procedural
knowledge of how the tools are normally used. Moreover, a control
group that was not exposed to priming showed that the objects
themselves had no significant priming effect, as evidenced by their
mixed choice of tools.

We argue that these results are compatible with the transfer
of interaction knowledge within and across digital environments,
similar to the transfer of mechanical knowledge underlying tech-
nical reasoning processes [35]. While our experiment is limited to
a WIMP-based interface, we believe it is a step forward in estab-
lishing the value of interaction knowledge and technical reasoning
in digital environments. Future work should investigate interac-
tion knowledge pertaining to other areas beyond text and graphics
editing, for example, consolidating high-level principles that ap-
ply across platforms such as desktop, mobile, VR and AR, or in
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interaction styles such as Blended Interaction and Reality-Based
Interfaces. More generally, such efforts should also further study
the roles of these cognitive processes in interactive behavior. In-
teraction knowledge and technical reasoning provide a promising
theoretical ground for such studies. They also open up a rich design
space for novel types of interactions that are based on humans’ abil-
ity to interact with and through tools, to appropriate them, and to
transfer tool-based and property-based knowledge across domains.
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