PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Loriette A, Liu W, Bevilacqua F,
Caramiaux B (2023) Describing movement learning
using metric learning. PLoS ONE 18(2): e0272509.
https://doi.org/10.1371/journal.pone.0272509

Editor: Peter Andreas Federolf, University of
Innsbruck, AUSTRIA

Received: February 2, 2022
Accepted: July 20, 2022
Published: February 3, 2023

Copyright: © 2023 Loriette et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The data,
information, and source code necessary to
reproduce the results, the statistical analysis and
the figures contained in the paper are available on
GitHub (https://github.com/ircam-ismm/plosone_
motor_metric_learning).

Funding: This research was supported by the
ELEMENT project (ANR-18-CE33-0002) F.B. and
the ARCOL project (ANR-19-CE33-0001) B.C. from
the French National Research Agency. The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

RESEARCH ARTICLE
Describing movement learning using metric
learning

Antoine Loriette®'"®*, Wanyu Liu'"2, Frédéric Bevilacqua'"?, Baptiste Caramiaux?"®

1 STMS IRCAM-CNRS-Sorbonne Université, Paris, France, 2 Sorbonne Université, CNRS, ISIR, Paris,
France

oa Current address: STMS, IRCAM, Paris, France
ob Current address: Sorbonne Université, ISIR, Paris, France
* antoine.loriette @ircam.fr

Abstract

Analysing movement learning can rely on human evaluation, e.g. annotating video record-
ings, or on computing means in applying metrics on behavioural data. However, it remains
challenging to relate human perception of movement similarity to computational measures
that aim at modelling such similarity. In this paper, we propose a metric learning method
bridging the gap between human ratings of movement similarity in a motor learning task and
computational metric evaluation on the same task. It applies metric learning on a Dynamic
Time Warping algorithm to derive an optimal set of movement features that best explain
human ratings. We evaluated this method on an existing movement dataset, which com-
prises videos of participants practising a complex gesture sequence toward a target tem-
plate, as well as the collected data that describes the movements. We show that it is
possible to establish a linear relationship between human ratings and our learned computa-
tional metric. This learned metric can be used to describe the most salient temporal
moments implicitly used by annotators, as well as movement parameters that correlate with
motor improvements in the dataset. We conclude with possibilities to generalise this method
for designing computational tools dedicated to movement annotation and evaluation of skill
learning.

Introduction

Motor skill learning is defined as the ability to perform a movement better, according to some
given criteria such as speed or accuracy, in comparison to a reference movement [1]. Metrics
used to assess motor learning usually rely on error-rates or movement variability measures.
However, such measures do not necessarily reflect the way humans perceive movement
improvements: people might instead focus on specific movement features or agglomerate sev-
eral criteria established qualitatively. Our long term goal is to establish metrics that could
describe human perception of movement improvement during motor learning or adaptation
processes. In this paper, we propose a method utilising metric learning in order to describe
human ratings of motor improvement.
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Metric learning is a machine learning technique that aims at finding the best distance func-
tion between datapoints so as to optimise a cost function. For example, a Mahalanobis distance
can be learned in the context of a classification task to maximise the score of a k-nearest neigh-
bour classifier [2]. Learned metrics typically improve performance in various machine learning
tasks (classification or clustering among others). Several metric learning surveys have been
published presenting the general approach [3, 4] as well as focusing on deep learning [5]. Inter-
estingly, metric learning can also be used as an analysis tool in relation to human annotated
databases. For instance, the perception of musical instrument timbre was investigated by ana-
lysing the structure of learned metrics from ratings of sounds similarity [6].

For body pose and movement perception, metric learning was first applied with human
comparison of still images from datasets containing skeleton data. Harada et al. [7] optimised
the correlation between a weighted sum of joint distances and human ratings to show that
wrist, neck and head were the most important joints for explaining body pose similarity. A
similar method was investigated by Tang et al. [8]. In both cases, the relative values of the opti-
mised weights reflected the importance of their associated joints for human perception of
body pose. Marinoiu et al. [9] derived a metric from data (using Relevant Component Analysis
[10]) using the way humans reproduced poses they had seen on videos before analysing how it
differed from standard Euclidean distance. As movement is dynamic, previous work also
looked at ways to take movement temporal structure into account. To that extent, Ofli et al.
[11] used a measure based on information theory and variance analysis to investigated which
joints were the most informative at specific times in videos for action recognition. Kriiger et al.
[12] explored the effect of different input features on the correlation of a Dynamic Time Warp-
ing (DTW) metric (representing the cost of temporal alignment between two examples), with
similarity ratings produced by humans based on videos. Finally, combining Mahalanobis dis-
tance learning and temporal alignment using Dynamic Time Warping has been investigated to
improve the performance of classification of handwritten signatures [13], or more generically
multivariate time series [14].

To our knowledge, metric learning has not yet been investigated in the context motor learn-
ing. In a recent study, Le Naour [15] showed that expert ratings of gymnastic movements did
not match measures obtained from quantitative analysis, calling thus for novel methods able
to derive metrics based on human ratings.

In this paper we investigate whether a computational metric can be learnt from human rat-
ing in a context of motor learning. Precisely, we propose to learn DTW-based distances on
human movement such as maximising the correlation with human rating. Our objective is
then to interpret the learned metrics for motor learning analysis. To do so, we employ a dataset
that was initially collected to study how users learn long gesture sequences from videos, over
several days. Each participant was asked to practice the movement sequence to be as close as
possible to a video reference. By rating this dataset, we can then use a metric learning approach
taking into account examples that are considered as similar [16, 17]. Our contributions are
threefold. First, we confirm that there is a correlation between the human rating and the DTW
metric, which we denote the “baseline correlation”. Second, we seek to optimise this baseline
correlation and examine whether such procedure allows us to estimate the most prominent
parameters used by the raters. We consider two types of parameters. The first one investigates
the movement features (position, velocity, acceleration, amongst others) of movement execu-
tion; the other explores temporal segments, i.e. focus of attention over time. Third, we examine
how these parameters used by the raters are implied by motor learning processes for our spe-
cific case.

The paper is structured as follows. We introduce the method we propose, including the
dataset we annotated. Then, we report on the results and discuss them.
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Method
General approach

Our goal is to train a similarity metric between movements which matches perceived similarity
expressed by human ratings. Human annotation of perceived movement similarity is challeng-
ing for several reasons. First, it might be difficult to establish objective criteria for rating [18].
Second, absolute continuous ratings are prone to large discrepancy between raters. To avoid
this, a better strategy is to ask raters to compare pairs of movements [16], or to compare two
pairs relative to a reference movement [17]. This is a well-documented finding which recom-
mends relative over absolute judgement or assessment [19, 20]. This strategy is adopted in the
present paper, which we call relative movement similarity assessment.

Fig 1 depicts the general approach. We consider the comparison between two video-tapped
movements of a person learning to perform a template gesture. First, we collect human ratings
on a given set of recorded performed movements, and second, we learn a computational met-
ric that matches, as close as possible, these human ratings.

In the first step, a movement database containing several performances of a given move-
ment template is chosen and rated (Fig 1(a)). Precisely, raters give, for a pair of movements A
and A’, a value between —1 and 1 expressing how close each movement A and A’ is to a tem-
plate T: -1 corresponding to A being the closest to T, 1 corresponding to A’ being the closest
to T, and 0 where A and A’ being judged as equally close to template T. In the second step, we
compute a parametric similarity metric between movement A (resp. A’) and template T (resp.
T). The difference between the two metric results is compared to the human relative similarity
metric for each corresponding pair. By acting on the metric’s parameters, we can optimise the
correlation between the parametric similarity metric and the human similarity judgement,
assuming that the relationship between DTW differences and ratings is linear.

The following subsections detail the annotation and learning procedure that were
developed.

Dataset

We used a publicly available dataset, previously used in a motor learning study [21] where it
was investigated how participants learned from video a complex hand movement, referred to

a. annotation template gesture T b. metric learning

S ) ( choice:
moptim(A’A’) = d(A,T) = d(A,,T)
d(A’T) d(A,,T)
OO goal: Mg~

% M i (AA) Q{ mrating(A"‘A )

imitation A imitation A’ X ¢
‘ mrating(A’ A,) 4
rater M im(AA)

Fig 1. Overall setup for the paper. (a) Performance pairs (4, A") are sampled for comparison against a reference T by
judges on videos and computing algorithms on sensor data. (b) Metric learning acts on parameters of the compute
function My, through search or optimisation to produce a meaningful relationship with 71,4, through a distance
function d.

https://doi.org/10.1371/journal.pone.0272509.g001
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Fig 2. Stills from video (top), times series from sensor data (middle) and position data (bottom) for the template
gesture, segmented in the the four phrases. In the middle graph, the short peaks in the time series correspond to
vertical strokes that can be seen in the video. The position (x, y) provided by the Optitrack sensor is seen on bottom
graphs. For each phrase, the starting point is marked by a circle while the last sample is indicated with a cross. The
colours are matching between the sensor time series and the segmented position data.

https://doi.org/10.1371/journal.pone.0272509.9002

as template gesture in the following. This template gesture can be schematically represented by
a sequence of four phrases (Fig 2, bottom panel). It was designed with a variety of ‘strokes’ and
specific spatial patterns, reminiscent of conducting gestures. For instance, vertical strokes fol-
lowed horizontal inwards and outwards movements, as visible in Fig 2, top panel. The video of
the template gesture is provided in the supplementary materials.

The template gesture was performed by the person who designed the gesture, seated on a
chair, wearing on the right hand a custom-made glove equipped with optical markers and an
IMU (Inertial Measurement Units), while being filmed (Fig 2, top panel). The gesture was spe-
cifically designed to be performed with the hand, so most of the information was indeed car-
ried by the hand. A total of 24 participants were asked to learn this template gesture over three
sessions occurring during three different days in a week, under various conditions. In this arti-
cle, we selected the dataset related to 12 participants having learned the template gesture in the
condition which did not involve audio feedback. During each session, participants were
equipped similarly in addition to having the template gesture video shown to them. Thus, the
same movement data and video recording are available for the participants’ performances and
for the template gesture. Precisely, motion capture data (3d positions (x, y, z)) and inertial data
(3D accelerometers and 3D gyroscopes) are available at a sampling rate of 100Hz, as shown in
Fig 2, middle panel. The video was captured at 30fps. For more details on the experimental
protocol used in the dataset collection, please refer to [21].

Human annotation

The annotation task consisted in providing a continuous measure assessing which video of a
pair of movements (A, A’) showed the movement most similar to the video of the gesture
template.

Annotation tool. For this, we designed an interface displaying the video of the template
gesture above the videos of the current pair (A, A") to evaluate (see Fig 8 in S1 Apparatus).
Between videos of A and A’, a slider, which default position was centred, allowed raters to set
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their rating. The left and right positions of the slider were associated to the video on the left
and right, respectively.

Dataset sampling. We considered several strategies for creating the pairs of movement.
After several pretests, we chose that each pair of videos A and A’ were to be performed by the
same participants, but related to different learning sessions (i.e. different days). In that case, we
hypothesised that the movement differences recorded in videos A and A’ would be noticeable.
Thus, to select each given pair, a participant was first randomly chosen (in a total of 12), and
two performances were randomly chosen provided they belonged to different sessions (days).

Annotation datasets. Three different annotation datasets were created, due to practical
limits. First, a dataset D, consisting of 90 video pairs, was annotated by all four paper
authors. This allows us to test the raters agreement. Second, the annotation dataset D;,,,, was
built to evaluate the intrarater reliability. For this, the first author re-annotated 45 video pairs,
from the previous annotation dataset, twice at a month interval. Third, a annotation dataset
Dyingle Which contained 180 video pairs annotated by a single rater (each author annotated 45
pairs). As described later, this annotation dataset provided additional data feeding the metric
learning, while its consistency can be evaluated.

DTW-based metric learning

The learning goal is to optimise the parameters of a movement similarity metric based on
human ratings. We propose to use a DTW-based metric (Dynamic Time Warping [22]). DTW
allows for handling temporal structure of the movements and remains one of the most used
metric for time series analysis, in addition to being easily parameterisable and interpretable.
Formally, the DTW between two time series X and Y, of sizes N and M respectively, is the sum
of element-wise distances over the optimal path p, where p = {(n, m), k > min(N, M)}:

DTW(X,Y) = ZHxi(U) - Yi(1)||1 (1)

i€p

where X, (resp. yi(1) is the feature vector of movement X (resp. Y) at time i(0) (resp. i(1)),
where i(0) (resp. i(1)) is the first (resp. second) index of the element i in path p, and where
[|x|]; is the L1-norm.

We propose to investigate weighted versions of the DTW acting on either feature dimen-
sion or temporal dimension. The adjustment of these weights should ideally reproduce the
weights implicitly used by raters in judging the similarity between movements.

In the following, a movement A is represented as a multidimensional time series A of length
N, where the feature vector at time i is written a, = (a’, a/, .. ., a¥) of dimension K. For
instance, a; can be a vector made of movement position, velocity, acceleration along the three
dimensions (x, y, z), leading in this case to K = 9. We present the two weighted versions of
DTW for the task of aligning movement A onto template T.

Weighting the movement features. The first version of the weighted DTW is based on
feature weighting. The goal is to adapt some weights on movement features, such as positions,
velocities, accelerations and/or IMU-based features acceleration including gravity, and angular
velocities. For two movement time series, such as template T and movement A, we denote this
distance DT W pazure(T, A), which is defined as:

K
DTeruture(T? A) = Zzwk‘ |t:<(0) - af(l)”l (2)

icp k=1

where tf‘(o) (resp. af.‘( 1>) is k-th dimension of feature vector t (resp. a) at time i(0) (resp. i(1)) wy is
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the weight on feature dimension k. The weights (wy) are to be optimised. We imposed two
constraints: wy > 0, Vk and a regularisation with > w, = 1.

Weighting the temporal segments. We also propose to weight different time segments of
the movement sequence with respect to the template gesture. In this case, optimising the met-
ric corresponds to adapting the relative importance of each segment. Considering two move-
ments such as template T and movement A, we first compute standard DTW distances
between these movements, which produce temporal alignment path between A and T. The
optimal path p is then segmented in N segments p; of equal size with regards to the unaligned
indices of the template gesture. The segments p; are only defined with regards to the template
gesture, which make this operation asymmetrical, but ensures that meaningful comparisons
can be made on the same segments between different aligned movements A and A’. We denote
this distance DT W egeni(T, A), which is defined as:

N
DTWsegmen[(T’A) = ZW]-ZHE(U) - ai(l)Hl (3)
=1

iep;

where (w;); are the weights to be optimised. Here again, we imposed the constraints: w; > 0, Vj
and ¥; w;= 1.

Defining the cost function for learning weights. Given ratings 71,4i,,(A, A') reflecting
the perceived relative similarity of A compared to A’ with respect to a given target gesture T,
we seek to optimise the DTW metric:

maptim (A7 Al) = DTW

optim

(T,A) — DTW

optim

(T, A’)

maximising the Pearson correlation between the 71,y and 11,44, for all sampled pairs of
movements A, A’, where #1,,;,,, refers to either m4q4,r. (involving DTW gapure) O Megment
(involving DT Wegment)-

Implementation and optimisation strategy. In our implementation, we used an open-
sourced version (https://github.com/slaypni/fastdtw) of the DTW algorithm [23] modified to
support the computation of fast Mahalanobis based distances. The DTW radius was set to 10,
after preliminary testing, to balance accuracy and compute time.

The optimisation is performed using the L-BFGS-B algorithm [24], which is a particularly
efficient algorithm for optimisation, useful when the number of datapoints is small, as com-
pared to popular gradient based approaches. The loss function is defined as the Mean Square
Error (MSE) between the generated distance and the annotation value. Once trained, we report
in the result the Pearson’s correlation between the vector of ratings and the vector of learned
distances. The optimisation is ran until convergence of the loss, defined as a relative change
between two steps smaller than le .

The cross validation used a repeated K-fold procedure (K = 2, 8 repeats) over datasets D,
and Dy;pge, splitting each time in half the 12 participants for training and for testing. The
2-folds 8-repetitions procedure provided in total 16 estimates. The performance is evaluated
and reported on the testing sets of D;,,y,-

Results

In this section we present our main findings. More precisely, we validate our datasets through
the analysis of annotation reliability between raters. Then we compute the correlation between
ratings and the standard DTW metric. This allows us to establish a baseline value that we com-
pare to both learning cases: feature-based and segment-based. Finally, we show that the opti-
mised weights can be used for movement learning analysis.
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Fig 3. Distribution of ratings against their averaged value for dataset D, (top) and D;,,;,, (bottom). The
distribution around the averaged value is representative of the annotation noise, which appears greater for different
raters as compared to different annotation session for the same rater, as reflected by comparing the ICC values of Dy,
and Dintra-

https://doi.org/10.1371/journal.pone.0272509.9003

Annotation reliability

We used the Intraclass Correlation Coefficient (ICC) [25] to measure the degree of agreement
between raters, in the D;,,,, dataset.

First, the ratings over D;,,, of all four raters are shown in Fig 3 (top). The ICC estimate
based on a single-rating (k = 1), absolute-agreement, 2-way mixed-effects model is 0.58 with
95% confident interval = 0.49 — 0.68 (Fg9 267 = 6.70, p < 0.001). Such a value for ICC is consid-
ered as ‘good’. If we considered the ICC calculated based on a mean-rating (k = 4), absolute-
agreement, 2-way mixed-effects model, a value of 0.85 is obtained, with 95% confident inter-
val = 0.79 — 0.90 (Fgo 567 = 6.70, p < 0.001). Such a value can be considered between good and
excellent.

Second, considering the dataset D;,,;,,,, Shown in Fig 3 (bottom), the ICC calculated based
on a mean-rating (k = 3), absolute-agreement, 2-way mixed-effects model, is 0.93 with 95%
confident interval = 0.90-0.96 (Fy4 g5 = 16.29, p < 0.001). Therefore, we found that reliability
was higher for this particular rater, with repeated annotation over time, compared to the inter-
rater reliability (#(131) = 2.75, p < 0.005). This was expected and shows that the interrater dif-
ferences are likely due to some perceptual differences rather than notators being uncertain
when annotating movements.

While these results cannot be generalised to other raters, they are still important for our
method since they show that 1) the rater group is consistent enabling us to use the annotation
mean 2) additional ratings of this group could be used, even if the movement is annotated by a
single rater.

Establishing a correlation baseline, without optimisation

We question first whether the DTW metric, applied between the template and the movement
pairs, correlates with the annotations. We investigated the effect of the feature space (which
feature is used in the distance) on this correlation. To do so, we employed a grid-search
approach with selected groups of input features.

We consider a feature space of a total of 5 types of features: acc (from the accelerometers),
gyr (from the gyroscope), p0 (position from the optical motion capture), and finally p1, p2
being respectively the first and second derivative of p0. Each of these types has three spatial
dimensions, denoted (x, y, 2), leading to a total of 15 features. p1 and p2 where computed
using a Savitzy-Golay filter (window length of 17 samples and third degree polynomial fit).
Each parameter was standardised per dimensions (zero mean and unit variance). We tested
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Table 1. Pearson correlation coefficient mean and standard deviation across cross-validation splits for different
input feature combinations. The two highest coefficients are marked in bold (statistically not different).

sensor data computed data correlation

u [
acc . . . . 0.713 0.058
gyr . . . 0.697 0.054
po ) ) 0.495 0.061
pl . 0.687 0.054
p2 0.573 0.066
acc gyr pO . . 0.753 0.040
. . po pl p2 0.684 0.040
acc gyr pO pl p2 0.759 0.036

https://doi.org/10.1371/journal.pone.0272509.t001

each 5 types individually, along with three possible combination as reported in Table 1. Corre-
lation coefficients were computed using cross-validation (see Method).

We ran an ANOVA on correlation coefficients with the parameter types as independent
variable. We found a significant main effect (F; 1,9 = 45.77, p < .001, 1712, = 0.72). Post-hoc tests
with Holm corrections highlighted several differences. For individual types, acc, gyr and p1
produced the best (and comparable) correlations at 0.713 (0.058), 0.697 (0.054) and 0.687
(0.054), respectively. Features p0 and p2 produced the lowest (and statistically equivalent) cor-
relations at 0.495 (0.061) and 0.573 (0.066). In other words, the position data was less informa-
tive than inertial data (acc or gyr). When combining three parameter types, we found that the
combination (acc, gyr, p0) correlated better with ratings than (p0, p1, p2). Overall, using all
five feature together produced the best level of correlation at 0.759 (0.036), while the difference
with (acc, gyr, p0) was not statistically different.

We further examine the relationship between the computed similarity metric and ratings.
Scatterplots of values for ratings (#1,4¢ing) and similarity metrics based on two sets of features
(M(poy and Mace, gyr, po, p1, p2)) are shown in Fig 4, on the left and right, respectively. Comparing
the left and right figure furthermore indicates that the improvement of the correlation factor
with specific types of features can indeed be explained by lowering the noise level. Visual
inspection of scatterplots for different feature combinations did not hint that other models
would be more suitable for explaining how these two variables could be related.

R =0.759
1.0 1.0 1
2
3
0.5 0.5 "
s 5
B 6
g
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5
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%o o 10
oo o 11
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Fig 4. Effect of input features on Pearson correlation. The scatter plots represent dataset D;,,., with unique colours
associated to participants. The DTW differences against the ratings displayed a stronger linear relationship with all
input features included (right) than with just the position (left). These two combinations were chosen as they exhibit
the worst and best performance from Table 1.

https://doi.org/10.1371/journal.pone.0272509.g004
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In summary, this confirms our assumption that the relationship between the similarity met-
ric derived from DTW differences and ratings can be characterised using the Pearson’s corre-
lation. In the next section, we examine how this correlation can be further optimised.

Optimising the similarity metric

In this section, we present our results on metric learning. We show that the correlation can be
improved through weight learning and, more importantly, that the weights can be interpreted

with respect to motor learning.
Weighting movement features.
DTW distance (denoted wy in Eq 2) to maximise the correlation with human ratings. The opti-
misation achieves a mean correlation coefficient of 0.772 (0.040), where the statistics are com-
puted over the cross-validation folds (see Method for more details on the optimisation
procedure). This is a slight improvement compared to the results obtained in the previous sec-
tion using all parameters without weighting (0.759 (0.036)). Nevertheless, paired t-tests con-
firmed the optimised value is significantly higher to the previously found coefficient (#(15) =

2438, p < 0.05).

We optimised the weights on each dimension used in the

The optimised mean weights per dimension are depicted in Fig 5, top panel. We ran an
ANOVA on the optimised weight values with FEATURE as the independent variable. We found
a significant main effect (Fy4 5,5 = 29.92, p < .001, nﬁ = 0.65). Post-hoc tests with Holm cor-

rections highlighted several differences. First, the weights are lower on the z-axis for the posi-
tion and its derivatives. This is coherent with the fact that the movement was mostly
performed in the (x, y)-plane. Also, some weights are significantly higher than others within
groups of sensors (e.g. acc, with respect to acc, and acc; or gyr, as compared to gyr, and gyr).
This suggests that annotators might have used these movement features to find differences
within the pair of movements with respect to the template.

Finally, we analysed the relationship between the optimised weights and movement learn-
ing. We recall that the ratings were related to performances that happened at different sessions
(days) when learning the template. Thus, ratings are expected to reflect participants’ improved
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Fig 5. Optimisation weights (top) and learning rate extracted from residual errors (bottom) across all 15 spatial
dimensions. Colours are unique per data type (acc, gyr, p0, p1, p2).

https://doi.org/10.1371/journal.pone.0272509.9005
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performance in imitating the model. To answer this question, we examined whether the move-
ment features that are important to optimise the correlation (given by the weights in Fig 5, top
panel) are also the ones that exhibited more improvement. To do so, we computed motor
learning rates associated to each movement parameters separately. For this, we used the base-
line DTW alignment with all 15 features, between performed movements and the template,
and we extracted the errors per feature along the aligned path. Then, we computed motor
learning rates by fitting an exponential function on the errors (see DTW errors and learning
rates per movement feature, Fig 9 in S1 Apparatus). The learning rates are reported in the Fig
5 bottom panel. Interestingly, there is overall a good correspondence between the learning
rates and the optimised weights: a Pearson’s correlation coefficient computed between means
reached r(15) = -0.62 (p < 0.05), which seems to confirm our hypothesis. The higher the
weight of a feature, the lower the exponential coefficient, which means a high learning rate.

Weighting temporal segments. Regarding the segment-based optimisation, we iterate on
different values of number of segments. We considered 11 choices of the number N of seg-
ments (i.e. [2, 5,7, 12, 15, 20, 25, 30, 40, 50, 80]). For each number of segment, we ran the opti-
misation using cross-validation, similarly as before. In Fig 6, the blue line reports the baseline
correlation (cross-validated correlation coefficients when considering the standard DTW on
the whole movement, as described when establishing the baseline); the green line reports the
correlation values obtained on the training sets while optimising the weights on each segment;
the orange line reports the correlation values obtained on the test sets. We found that, for
small values of N, the model could not learn a meaningful solution and the correlation did not
improve. For higher values of N, qualitatively between N = 20 and N = 30, the model seems to
be able to learn meaningful weights which improves the correlation. At N = 25, a Student’s T-
test analysis shows a significant performance improvement against baseline (#(15) = 2.549,

p < 0.05) with a mean correlation coefficient of 0.796 (0.043). For N higher than 30, the mean
correlation on the test set decreases and is not significantly higher than the mean baseline cor-
relation. This suggests that the model overfits on the training sets.

The optimised weights for N = 25 are depicted in Fig 7, top panel. We ran an ANOVA on
the optimised weights with SEGMENT as the independent variable. We found a significant main
effect (Fo4 375 = 41.21, p < 0.001, 112 = 0.72). Post-hoc tests with Holm corrections highlighted
several differences. In particular, one group of segments stands out from the others, and whose
weights reached significantly higher values than the rest. This group is comprised of segments
{17, 18, 19, 20}. Interestingly, the segments are adjacent and occurring at a specific moment of

0.86 1 dataset
—— reference
0.84 testing

—— training

o
©
N

Correlation
o
[o2]
o

0 10 20 30 40 50 60 70 80
Number of segments N

Fig 6. Influence of the number of regions on the correlation for training and testing. The best performance
(marked with an asterisk) occurred for N = 25, with fewer segments the model was not flexible enough and with more
segments the model started to overfit.

https://doi.org/10.1371/journal.pone.0272509.9006
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Fig 7. Per-segment learning rate, correlation and optimisation weights. Colours are indicative of the four template’s
phrase defined on Fig 2.

https://doi.org/10.1371/journal.pone.0272509.9007

the gesture sequence (see Fig 2), indicating where raters temporally focused their attention in
the rating process.

We repeated a similar analysis to the previous section, investigating the potential relation-
ships between the optimised weights and learning rates per segment. Partial DTW contribu-
tions were computed per segment as the sum of pairwise distances on the portion of aligned
paths described by each segment. These contributions were then ordered by performance time
and learning rates were extracted from a fitted exponential model (see DTW errors and learn-
ing rates per temporal segment in S1 Apparatus). The learning rates are reported below the
optimisation weights in Fig 7. We found a significant linear relationships between the means
of optimised weights and learning rates (r(25) = —0.70, p < 0.001). By comparing adjacent seg-
ments with t-tests, we identified three main regions of motor improvement located in seg-
ments [7-9], [12-14] and [16-21]. The beginning and end of the movement showed the
smallest learning rates. Interestingly, while three main regions exhibited some learning prog-
ress, only the last one was favoured by the ratings. This suggests that, although learning
occurred predominantly at three different times during the movement, the technique revealed
that annotators ultimately placed more importance on the last of these three occurrences.

Discussion

In this paper, we proposed a method that learns a similarity metric which matches human rela-
tive similarity ratings of pairs of movements with respect to a template.

First, we found that the relationship between the DTW similarity metric with all movement
features and continuous human ratings can be approximated as a linear function (R = 0.76),
with respect to the annotated database we considered. In other words, linear and rotational
accelerations, positions and its derivatives conveyed useful information to characterise the
movement. This result seems to indicate that raters referred to a multidimensional complex of
information. In a higher dimensional space, metric learning could allow to find a lower dimen-
sional manifold where the ratio between information and noise is improved [26]. This also
echoes other results with similar data where feature selection for time warping of long
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movement sequences was not found to be beneficial [27] and significantly differ from other
work involving data with larger feature spaces, such as skeleton data used by [7, 8].

Second, we found that this correlation could be optimised by weighting either movement
features or time segments. Statistically significant improvements were found in both cases as
compared to baseline even though the improvements were rather small: + 1.6% increase from
0.76 compared to 0.77 for the spatial case; + 4.8% increase from 0.76 compared to 0.79 for the
temporal case. While we used diagonal covariance matrices in the Mahalanobis distance to
limit the number of parameters to learn, a full covariance matrix should technically improve
the correlation value, and was confirmed by preliminary testing. However, such approach has
two main drawbacks. First, it would require the collection of a larger dataset to mitigate the
risk of overfitting, which was challenging in our case of human-provided ratings. Second, the
learned metric would also be more difficult to interpret than in the case of the diagonal matrix
which simply amounts to weighting each dimension of the feature space. As a matter of fact,
interpretabilty represents an important feature of our method and contrasts with other works
in metric learning wherein classification performance improvements do not necessarily need
to be explained [13, 14].

Regarding metric interpretation, the optimised weights provide valuable information about
important features that the raters perceived to judge the movement similarity. For the spatial
case, the three largest weights (acc,, gyr, and p1,) point towards the type of movement parame-
ters that the raters seemed to focus on: acceleration in the horizontal plane (typically occurring
after the vertical strokes), rotation of the wrist (appearing in the preparation and during the
strokes), and velocities in the vertical axis (typically during strokes). In contrast, the optimised
weights on features along the z axis are among the lowest (e.g. p0, = 0.015). Since the move-
ment is executed mostly in the X-Y plane, this validates the fact that the learned metrics extract
meaningful information from the data. This is in line with previous work using input weights
learning as a way to analyse human perception [6]. In this paper, we went further by exploring
also the temporal dimension. For the temporal case, the very beginning and end show lower
weight values meaning that these movement segments (segments 1-5, 21-25) do not provide
meaningful information in assessing movement similarity. This is also the case during the two
transition moments (segments 10-11 and 14-15). In contrast, we found that the most impor-
tant segments for assessing movement similarity were located in the third phrase (segments
17-20, in green). Interestingly, this is the most complex phrase to perform, requiring to articu-
late several circle arcs in different directions. Typically, the participants made several mistakes
such as inverting the movement directions, or missing the starting point of a rotation or the
number of rotations.

More importantly, in addition to having found strong correlations between learned weights
and motor learning rates in both spatial (1(15) = —0.62) and temporal (1(25) = —0.70) cases, the
analysis of their relationship offer interesting opportunities for interpretation. In the spatial
case, we found that the weight for the dimension p0z (position in depth) is close to 0, whereas
associated learning rate suggest that some progress was also made by participants on this axis.
Likewise, in the temporal case, it appears that motor learning occurs in segments following the
strokes (segments [7-9] in phrase 1, segments [12-14] in phrase 2, and segments [17-21] in
phrase 3) but only the last segment is favoured through optimisation. This evidence shows that
the learned metric is able to highlight what caught the attention of the raters when assessing
the similarity between movements. Therefore, the method goes one step further than the state
of the art on metric learning applied to motion perception [9, 11] as it highlights where motor
learning occurs as well as where human raters perceive improvements in movement execution.
In addition, this result is based on averaged ratings across raters, which suggests that raters
were consistent with respect to the spatial and temporal foci of attention in movement
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similarity assessment. However, nothing prevents using the method considering a single rater
which will highlight idiosyncratic choices in movement similarity assessment.

This paper showed that metric learning is a promising approach as a tool for probing how
humans perceived motion similarity and progress in movement execution. In this study we
tested our method with one dataset taken from previous work, which included a specific sen-
sor configuration. Our method could, however, be used in future research to draw broader
conclusions about the links between movement perception and motor learning, by investigat-
ing to which extent movement characteristics might generalise across different datasets.

Conclusion

We propose a method that uses metric learning to obtain a similarity metric to match human
annotators. This is among the first attempts to use metric learning in the context of motor skill
learning, especially considering complex movement sequences. We show that the method is
effective in providing information on salient movement features and temporal moments that
human annotators focused on. Such information can be corroborated with motor learning
processes in our case. Further studies can explore these findings in order to clarify criteria
used in movement annotation that are known to be difficult to formalise.

Our method is generic and could be applied in other scenarios. For example, it could be
used with other algorithms other than DTW, such as probabilistic models (e.g. Hidden Mar-
kov Models [28]) or Neural Networks [29]. Importantly, we believe that this is an important
first step toward building interactive approaches of annotating complex movement, where
similarity metrics could be adapted using human ratings.
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