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Abstract

We introduce PASTA (Perceptual Assessment System for ex-
planaTion of Artificial Intelligence), a novel human-centric
framework for evaluating eXplainable Al (XAI) techniques
in computer vision. Our first contribution is the creation
of the PASTA-dataset, the first large-scale benchmark that
spans a diverse set of models and both saliency-based and
concept-based explanation methods. This dataset enables ro-
bust, comparative analysis of XAI techniques based on hu-
man judgment. Our second contribution is an automated,
data-driven benchmark that predicts human preferences using
the PASTA-dataset. This scoring called PASTA-score offers
scalable, reliable, and consistent evaluation aligned with hu-
man perception. Additionally, our benchmark allows for com-
parisons between explanations across different modalities, an
aspect previously unaddressed. We then propose to apply our
scoring method to probe the interpretability of existing mod-
els and to build more human-interpretable XAI methods.

Introduction

As Deep Neural Networks (DNNs) are increasingly de-
ployed in high-stakes domains such as law and medicine
(Surden 2021; Litjens et al. 2017), understanding their
decision-making process has become essential (Bender et al.
2021). Their opacity often earns them the label “black
boxes” (Castelvecchi 2016), raising trust and accountabil-
ity concerns in critical applications (Vereschak et al. 2024).
This has given rise to the field of eXplainable Al (XAI)
(Gunning et al. 2019).

A wide variety of XAI techniques have been proposed
(Speith 2022; Saeed and Omlin 2023), notably saliency-
based methods (Muhammad and Yeasin 2020; Bohle et al.
2024), which highlight relevant input features, and concept-
based methods (Yan et al. 2023; Diaz-Rodriguez et al. 2022),
which associate predictions with high-level semantic con-
cepts. However, comparing such heterogeneous approaches
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Figure 1: PASTA automates the evaluation of human per-
ception of provided explanations by computing a PASTA-
score. By integrating PASTA-score (y-axis) with existing
faithfulness metrics (x-axis), we aim to foster the devel-
opment of explanations that are not only aligned with the
model’s behavior but also comprehensible to human evalua-
tors. Samples reported in the figure correspond to the label
dog for a ResNet50 classifier trained on PascalPART. XAI
methods: top left: GradCAM; Top right: FullGrad; Bottom
left: SHAP; Bottom right: AblationCAM
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remains an open problem.

Evaluating XAI methods is particularly challenging for
two main reasons. First, the diversity of explanation types
complicates the definition of a common evaluation frame-
work. Second, the notion of a “good explanation” is in-
herently subjective. This creates a dichotomy between non-
perceptual evaluations—focused on model-centric metrics
using toolkits like OpenXAI, Quantus, and Xplique
(Agarwal et al. 2022b; Hedstrom et al. 2023; Fel et al.
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2022a)—and perceptual evaluations, which assess human
understanding. While the latter is often explored through
anecdotal examples (Selvaraju et al. 2017; Wang et al.
2020), user studies (Dawoud et al. 2023; Colin et al. 2022),
or region-of-interest alignment (Liu et al. 2024a; Arras,
Osman, and Samek 2022), there is still a lack of stan-
dardization in assessing explanations from the human per-
spective (Nauta et al. 2023). Yet, this dimension is cru-
cial—explanations faithful to the model’s reasoning may
still be unintelligible to human users, limiting their action-
ability. In this sense, our proposed PASTA-score allows for
evaluating explanations based on a combination of faithful-
ness and human preferences, as shown in Figure 1.

To address these challenges, we propose PASTA—the
Perceptual Assessment System for explanaTion of Artificial
intelligence—which aims to automate the human-aligned
evaluation of XAI methods. PASTA has two core com-
ponents. First, a benchmark, PASTA-dataset, composed
of four diverse image-based classification datasets with
aligned concept annotations, enabling the comparison of 20
XAI techniques across multiple architectures. Second, the
PASTA-score, a data-driven metric designed to predict hu-
man preferences, providing a scalable way to evaluate ex-
planations from a perceptual standpoint. Unlike prior bench-
marks focused solely on saliency or user studies (Colin et al.
2022; Dawoud et al. 2023), PASTA unifies both saliency-
based and concept-based methods under a single evaluation
framework.

Our contributions are: (1) Comprehensive XAI Bench-
mark: We introduce the PASTA-dataset, enabling the eval-
uation of both visual and concept-based explanations. (2)
Large-scale Method Evaluation: We assess 20 XAl meth-
ods across multiple datasets and models, including both
post-hoc and ante-hoc methods. Our first result suggests that
human annotators tend to prefer saliency and perturbation-
based techniques, like LIME and SHAP. (3) Human-
aligned Explanation Scoring: We propose PASTA-score,
an automated yet perceptually grounded assessment of ex-
planations, trained on the PASTA-dataset to replicate human
preferences. (4) Practical Applications: We present three
use cases of PASTA-score, showing how it can guide the
design of more interpretable models, and serve as a proxy
for visual human assessment in practical deployments. The
pipeline of the global workflow is presented in Figure 2.

The complete PASTA framework (code, annotation, and
models) will be released upon acceptance.

Related Work

Explainable AI. To address the challenge of explaining
DNNs, several specialized tools have been proposed, of-
ten categorized into post-hoc and ante-hoc methods (Arri-
eta et al. 2020; Rudin et al. 2022). Post-hoc methods en-
compass any tool external to the model, allowing us to gain
insights from any pre-trained DNN. Popular examples are
GradCAM (Selvaraju et al. 2017), LIME (Ribeiro, Singh,
and Guestrin 2016), and SHAP (Lundberg and Lee 2017).
While most post-hoc explainers agree in providing input re-
gions most responsible for a certain prediction, they differ
in many non-trivial details, and selecting and evaluating the
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Figure 2: Pipeline of the PASTA framework. We first col-
lect a dataset of human preferences called PASTA-dataset.
This dataset is used to learn to emulate human preferences
for the new samples on the test set using the PASTA-score.
The trained PASTA-score can then be deployed to down-
stream applications as a consistent-over-time, quick and
cost-effective replacement for human feedback.

most appropriate explainer for each task can be challenging
(Leavitt and Morcos 2020; Roy et al. 2022). Ante-hoc meth-
ods, instead, aim at modifying the underlying model archi-
tecture to provide explanations by design. This can be done
in the framework of Concept Bottleneck Models (CBMs)
(Koh et al. 2020) by prompting the model to first predict
a set of human-understandable high-level concepts, and then
making the final prediction using a shallow and interpretable
classifier that supports human inspection, or by decompos-
ing the reasoning of the model into smaller and more action-
able steps (Ge et al. 2023).

Evaluating explainability. While several methods have
been proposed to quantitatively measure explanation quality,
such as faithfulness (Petsiuk, Das, and Saenko 2018; Das-
gupta, Frost, and Moshkovitz 2022; Azzolin et al. 2025),
sparsity (Chalasani et al. 2020; Bénard et al. 2021), ro-
bustness (Alvarez-Melis and Jaakkola 2018b; Montavon,
Samek, and Miiller 2018), sensitivity (Adebayo et al. 2018;
Hedstrom et al. 2024) and alignment to an assumed ground
truth (Colin et al. 2022; Mohseni, Block, and Ragan 2021;
Dawoud et al. 2023), they inherently overlook the percep-
tual aspect with respect to the human, who is the expected
consumer of such explanations. Evaluating explanations via
user studies, e.g., where annotators are asked to rate and
evaluate explanations (Chen et al. 2018; Shu et al. 2019;
Yang et al. 2022; Kares et al. 2025), are, however, very
costly, prone to unreproducibility issues (Nauta et al. 2023),
and often unfeasible for tasks that require trained users, like
in the medical domain (Mir6-Nicolau, Moya-Alcover, and
Jaume-i Capé6 2022; Muddamsetty, Jahromi, and Moeslund
2021). In this work, we take the first step towards standard-
izing the evaluation of human perception preferences of ex-
planations (Nauta et al. 2023). We propose to overcome the
issues of hard-to-reproduce large-scale user studies by au-
tomating the evaluation of XAl techniques through a multi-
value scoring method that mimics human preferences while



taking into account the users’ diverse expectations, which
naturally emerge in user-based studies.

Automated scoring. Automated scoring involves devel-
oping models that assign scores to inputs based on a ref-
erence dataset, often derived from human ratings. A partic-
ularly active area of research in this domain is automated
essay scoring. Traditionally, this has been addressed through
handcrafted feature extraction (Yannakoudakis, Briscoe, and
Medlock 2011), but modern methods tend to be closer to
model as a judge (Lee et al. 2024; Taghipour and Ng 2016;
Chiang et al. 2024). More recently, there has been a growing
interest in using embeddings from large language models
(LLMs) as features for scoring. The first successful attempt
in this direction was made by Yang et al. (2020). Building
on this trend, other approaches have incorporated LLM em-
beddings with models like LSTMs (Wang et al. 2022), in-
tegrated text generation into the training loop (Xiao et al.
2024), or introduced multi-scale aspects to enhance perfor-
mance (Li et al. 2023).

Creating the PASTA-dataset

To assess the quality of XAl explanations for image classifi-
cation decisions from a human-centric perspective, we con-
structed a comprehensive dataset comprising images, pre-
dictions, explanations, and evaluations of these explana-
tions, as depicted in Figure 3. To account for the hetero-
geneity of different XAI methods, model backbones, and
training scenarios, we constructed the PASTA-benchmark to
include 1000 images sampled across 4 available datasets,
7 classification backbones, 20 XAI methods, 6 questions,
and 5 annotations per image. The challenge in annotating
such a dataset resides in its multiplicative nature, where each
question requires an annotation across multiple backbones,
datasets, XAl methods, images, and human annotators. Con-
sequently, the PASTA-dataset contains an overall number of
633,000 samples, each corresponding to a unique Likert-like
rating, which is the largest benchmark available of this kind.

To construct such a dataset, the initial phase involved de-
veloping a unified platform designed to integrate various
models, XAI methods, and datasets in a streamlined manner.
This platform encompasses a diverse array of models and
XAI methods. Given the potential utility of this platform as
a baseline for future research, we intend to release it publicly
upon publication of this paper. Further details regarding the
overall procedure, including details about the datasets em-
ployed, model training, and explanation extraction, are avail-
able in Section A.1 of the appendix. The subsequent phase in
dataset creation is dedicated to annotating the explanations,
which involved 24 participants in an online process. A piv-
otal insight from existing user study literature (Xuan et al.
2025; Liao et al. 2022) is that human perception of explana-
tions is not unidimensional; rather, it encompasses a range
of potentially unaligned desiderata. For instance, a saliency-
based explanation that highlights a dog to predict a cat can
be entirely clear, thereby satisfying complexity desiderata,
while simultaneously not fulfilling plausibility desiderata.
Consequently, we pose multiple questions designed to en-
compass a spectrum of human assessment as broad as pos-
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Figure 3: Overview of the human annotation process in
the PASTA-dataset. We compute a total number of 46 ex-
planations for each image, out of which 21 are sampled and
rated by humans according to six questions. Further details
available in Appendix A.2.

sible. Specifically, the following questions were asked:

* QI: Is the provided explanation consistent with how I
would explain the predicted class?

* Q2: Overall the explanation provided for the model pre-
diction can be trusted?

* Q3: Is the explanation easy to understand?

* Q4: Can the explanation be understood by a large num-
ber of people, independently of their demographics (age,
gender, country, etc.) and culture?

* Q5: With this perturbed image, to what extent has the
explanation changed ? (Examples with good predictions
and light perturbations)

* Q6: With this perturbed image, to what extent has the ex-
planation changed? (Examples with bad predictions and
strong perturbations)

The selection of these questions reflects a broader dis-
course on user studies and desiderata. To ensure that annota-
tors comprehensively understand the task and expectations,
we implemented an evaluation protocol developed with the
assistance of a psychologist. This protocol includes annota-
tor training and continuous monitoring throughout the pro-
cess. Discussions regarding the desiderata, a detailed eval-
uation protocol, and information about the annotators are
available in Section A.2 of the Appendix.

Analysis of Human Preference

Having collected a large number of human preferences for
different XAl models and backbones in the PASTA-dataset,
we now proceed to analyze human scores in relation to each
method. The full analysis is available in Appendix B.3.
Human preferences for output format: As illustrated in
Figure 4, results indicate that humans tend to prefer image-
based explainers in relation to questions Q1-QS5, meaning
that saliency maps are perceived as more interpretable than
concept-based explanations. Although several factors may
contribute to this behavior—such as the lower cognitive load
of image-based explanations compared to concept-based
ones—a comprehensive investigation of the underlying psy-
chological causes is left for future work. The sole exception
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Figure 4: Scores for each question, for saliency-based and
CBM-based explanation. Overall, saliency-based explana-
tions are preferred over CBM-based ones.
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Figure 5: Scores for each question, for different back-
bones of saliency methods. As backbones for saliency
methods, ViT-B and CLIP obtain overall similar results,
while ResNet50 has generally better scores.
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to this observation pertains to Q6 (note that for Q3, the rat-
ings are inverted, with a low score indicating favorable be-
havior). This phenomenon can be explained by the fact that
presenting explanations as a heatmap overlaid on the image
reduces the perceptual impact of perturbations.

Human preferences for model architecture: Figure 5
illustrates the average scores across XAI methods that use
the same backbone, highlighting a general preference for
ResNet50. CLIP and ViT achieve similar scores, likely due
to the architectural similarities between the two models.
ResNet50, which played a pivotal role in the development of
many XAI methods, consistently scores higher. This could
suggest a potential bias toward ResNet50 in the design and
effectiveness of current XAl methods. The results for the last
two questions may be due to ViT being more sensitive to the
perturbations used than Resnet50. Among the methods we
studied, those based on feature factorization—like Eigen-
CAM (Muhammad and Yeasin 2020) and Deep Feature Fac-
torization (Collins, Achanta, and Susstrunk 2018)—tend to
give more consistent and preferred explanations. This may
be because they remove complex components that can create
confusing artifacts, making the explanations easier to under-
stand.

Scoring network
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VLM Image
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Saliency-based

Figure 6: Functioning of the PASTA-score. First, we ex-
tract the embeddings for each explanation using a frozen im-
age encoder of a VLM. Then, we employ a scoring network
trained on the labels provided by the PASTA-dataset to gen-
erate a final score.

Developing the PASTA-score

To provide a tool for measuring human assessment of XAI
techniques, we introduce the PASTA-score, which simu-
lates a human evaluation. The global pipeline is illustrated
in Figure 6. More precisely, the PASTA-score is composed
of an embedding network, that processes both CBM out-
puts or saliency maps, and a scoring network, that computes
scores from the embeddings. Using the data collected in the
PASTA-dataset, the PASTA-score aims at predicting the hu-
man scores for questions Q1 to Q6 for new explanations,
playing the role of an automated benchmark.

Computation of the embeddings

Drawing inspiration from recent literature in automated es-
say scoring (Yang et al. 2020; Wang et al. 2022), which en-
counters similar challenges due to working with a dataset
of thousands of samples (21,110 samples per question, pre-
cisely) and requiring a DNN to automatically learn the score,
we opt for a foundation model that we will fine-tune using
a multi-linear perceptron. However, unlike automated essay
scoring, we deal with both image and textual inputs, mak-
ing the use of a Vision Language Model (VLM) manda-
tory. We tested multiple candidates, such as CLIP (Yan et al.
2023), BLIP (Li et al. 2022a) and LLaVa (Liu et al. 2024b).
This choice allows for a unified integration of both concept-
based explanations, which can be transformed into text, and
saliency map-based explanations, which can be projected
into the same embedding space. Let x; € R7XWX3 pe
the ¢-th test image with height H and width W, and let

saliency ¢ RHXW be a saliency-based explanation for this
image. We denote the image encoder of a Vision-Language
Model (VLM) as VLMjpae.. To embed a saliency explana-
tion, we apply the encoder to the image overlaid with its

heatmap:

¢image(efaliency) = VLMimage(Heatmap($ia e?aliency))’
(1
where Heatmap generates the visual overlay of the expla-
nation on the image.
For concept-based methods (CBMs), let e{'BM € RX be
the explanation vector, where K is the number of concepts.



This vector is turned into a sentence using a text template,
and then encoded with the VLM’s text encoder VLM ;ey:

Drext (EPM) = VLMo (Sentence(eSBM)).  (2)
Since the PASTA-score is compatible with different
VLMs and does not rely on a specific one, we eval-
vate it using several VLMs: CLIP (Liu et al. 2024b),
SIGLIP (Zhai et al. 2023), EVA (Sun et al. 2023), and
BLIP (Li et al. 2022a). This results in multiple vari-
ants of our metric: PASTA-score“™? , PASTA-score’6P ,
PASTA-scoreEVA, and PASTA-score®™",

To support our design choices, Appendix D.2 presents ex-
tensive ablations on various factors: the impact of textual
templates, the number of concepts K, the way saliency maps
are visualized, and whether label information is included.
We also explore alternative versions of Equations 1 and 2,
and how these choices affect the final score.

Scoring network

Once the embeddings are computed, the label information is
concatenated to the embedding, and a scoring network com-
posed of a multi-layer perceptron is used to predict scores.
Inspired by Automated Essay Scoring (Yang et al. 2020;
Wang et al. 2022), we use a loss L that combines a similarity
loss L4, a mean squared error (MSE) loss L, ¢, and a rank-
ing loss L,. From a set of ground truth scores obtained from
majority voting {mg }reo,n,] and the predictions given by
the scoring network {724 } (o, n,] the resulting loss is de-
fined as:

L(my, my) = aLg(my, i) + BLmse(Mi, 1)
+yLy(my,my),  (3)

where «, (3, and -y are hyperparameters controlling the rela-
tive importance of each component. Formulas about the dif-
ferent losses are given in Appendix D.1. Since the PASTA
dataset provides 5 ground-truth votes per inference, we ex-
plored different aggregation strategies. To mitigate the phe-
nomenon of high non-consensus, the mode was selected as
the final choice.

Classifier results

Note that in the PASTA-dataset each sample corresponds
to a triplet (input image, explanation, human ratings). The
same image thus appears multiple times for different XAl
methods, and the same XAI method appears multiple times
for different images. To guarantee that no leakage occurs
between train-test splits, we design them to ensure that the
same image, or the same XAI method, does not appear in
different splits. Images and XAI methods included in the
training splits are randomly chosen based on the run’s ran-
dom seed. For Q1 to Q6, we calculate the Mean Square Error
(MSE), Quadratic Weighted Kappa (QWK), and Spearman
Correlation Coefficient (SCC) between the predicted and
ground truth labels on the test set. The results are presented
in Table 1, where we also ablate different choices of embed-
ding methods. We also report the inter-annotator agreement
values, which correspond to the expected deviation of the
metrics between a randomly selected annotator’s score and

the mode. Our network best replicates answers to Q1 and
Q2, with similar performance across PASTA-score™™™ and
PASTA-score>'MP_ This is likely due to greater rating di-
versity and stronger agreement between annotators, which
supports more stable training. In contrast, Q3 to Q5 shows
lower agreement, and Q5—Q6 has less diverse ratings. While
the MSE stays similar, it becomes harder to learn the rank-
ing patterns, likely due to the more subjective nature of these
questions and the added uncertainty from image perturba-
tions in Q5 and Q6.

Alignment with Established Benchmarks

In this subsection, we aim to evaluate whether the PASTA-
score aligns with the findings of existing studies that com-
pare human assessments of XAI methods. To accomplish
this, we use the benchmark dataset established by Yang et al.
(2022), which offers comparative evaluations of GradCAM
(Selvaraju et al. 2017), RISE (Petsiuk, Das, and Saenko
2018) (at the image level), and Guided Backpropagation
(Springenberg et al. 2014). These quantitative evaluations
are presented in the form of Mean Absolute Error (MAE)
between generated saliency maps and those produced by a
Human Saliency Imitator (HSI). Given that this benchmark
aims to explore human expectations, we compare the results
obtained by the authors (MAE) with the PASTA-score re-
lated to Q1.

The results are summarized in Table 2, and indicate that
despite RISE and Guided Backpropagation not being in-
cluded during the training of the PASTA metric, the ob-
tained rankings remain consistent. This provides empirical
evidence supporting the generalization of the PASTA-score
to unseen XAl techniques.

Applications

In this section, we explore three different applications us-
ing the PASTA-score as a replacement for human feedback,
which would be difficult or too costly to run at scale with-
out automation We use PASTA-score to guide XAI methods
toward better interpretability (in the first and third applica-
tions) and to analyze how model size affects interpretability
(in the second application). All experiments use the PASTA-
score model trained on Q1 for consistency.

Mixture of XAI methods

Our first application is to dynamically select the explainer
giving the explanation that best matches human judgments
for each specific image, using a mixture of XAl methods.
In our experiments, we fix the classifier to be a ResNet50,
and we select the explanation with the highest PASTA-score
for each image. The distribution of selected XAI methods
is shown in Table 7. The results indicate a substantial diver-
sity in the methods employed, with FullGrad emerging as
the most frequently used, selected nearly half of the time.
This trend is reflective of user ratings within the PASTA-
dataset, where FullGrad is identified as providing the most
effective explanations according to annotators. In terms of
faithfulness, the computation of the average faithfulness cor-
relation across explanations selected by our PASTA-score



Table 1: Mean Square Error (MSE), Quadratic Weighted Kappa (QWK), and Spearman Correlation Coefficient (SCC)

for each question. Each value is the average of 5 runs with standard deviation. Human refers to inter-annotator agreement.

Metric Model Q1 Q2 Q3 Q4 | Q5 Q6
MSE |  PASTA-score™™®  0.990 +0.104 0.993 +0.096 2.111+2.529 0.811+0.095 | 1.476 +0.183  0.752 + 0.127
PASTA-score> ' 0.989 £ 0.113  1.009 £ 0.125 0.842 + 0.094 0.840 + 0.106 | 1.396 + 0.177  0.739 =+ 0.140
PASTA-score®™® 3207 £ 1.840 3.287 £ 1.835 5.938 £2.542 4.642 £3.135 | 3.005 £ 1.385 10.710 & 4.943
PASTA-score™®  1.666 + 1.215 1.747 + 1.174 3.355£3.099 2.097 = 2.608 | 1.767 + 0.568  3.324 4 5.091
Human 0.415 £0.037 0.429 +£0.049 0.562 +0.104 0.478 +0.080 | 0.509 +0.102  0.299 £ 0.051
QWK 1 PASTA-score™™®  0.450 +0.066 0.452 +0.063 0.199 +0.040 0.216 +0.052 | 0.165 + 0.060  0.159 + 0.031
PASTA-score™ ™" 0.471 + 0.055  0.459 + 0.056 0.237 +0.052 0.219 + 0.035 | 0.177 £ 0.061  0.165 + 0.018
PASTA-score®™ 0328 +0.023  0.340 +0.020 0.181 £ 0.003 0.173 £ 0.017 | 0.081 & 0.081  0.159 & 0.011
PASTA-score™*  0.462 £ 0.050 0.457 £0.054 0.160 £ 0.099 0.230 & 0.018 | 0.163 £ 0.029  0.185 = 0.049
Human 0.849 £0.013 0.845£0.017 0.731 £0.050 0.748 £0.041 | 0.848 £0.029  0.796 + 0.048
SCC1T  PASTA-score™®  0.484 £0.064 0484 +£0.062 0.21320.040 0.230 £0.050 | 0.197 £ 0.073  0.193 & 0.030
PASTA-scoreS'°MP 0501 &+ 0.052  0.490 = 0.057 0.247 = 0.048  0.223 +0.029 | 0.213 £0.071  0.196 = 0.020
PASTA-score®™®  0.397 £0.036 0411 £0.033 0.207 £ 0.065 0.194 £ 0.014 | 0.088 £0.104  0.218 £ 0.012
PASTA-score®™  0.484 + 0.046 0.474 + 0.048 0.150 + 0.155 0.247 + 0.015 | 0.216 = 0.035  0.220 =+ 0.057
Human 0.844 £0.017 0.839 £0.019 0.722 £0.045 0.742 £0.038 | 0.850 £0.023  0.789 %+ 0.039
Table 2: Comparison of Rankings Based on HSI and
PASTA-Scores. The results illustrate that the PASTA-score
exhibits a correlation with the Human Saliency Imitator pre-
sented by (Yang et al. 2022).
Method MAE Score | PASTA-score 1
RISE 0.442 3.113
GradCAM 0.703 3.150
Guided Backpropagation 0.890 1.846
- 60 yields a relatively stable value, with a slight improvement
S 40 compared to the value obtained by averaging over every ex-
o plainer (0.0627 for our selection versus 0.0579 for the av-
© 20 erage over every explainer). This confirms that it is possible
to use PASTA to enhance the interpretability of explanations
0 without compromising their faithfulness.
&
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Figure 7: Distribution of methods selected by our mixture
of XAI techniques. The x-axis denotes the number of im-
ages in the automated benchmark for which the respective
XAI method attained the highest performance.

this relates to XAI methods. To this end, we compute the av-
erage PASTA-score within an identical experimental frame-
work, varying only the size of the backbone model. Specifi-
cally, we employ CLIP as the classifier and select backbones
from among its ViT-B-16, ViT-L-14, ViT-H-14, and ViT-g-
14 variants. The results of this analysis are presented in Fig-
ure 8. Our results show that for activation map-based XAI
methods, performance metrics drop as the model size in-
creases. This decline is particularly pronounced when tran-
sitioning from the ViT-B to the ViT-L architecture. Several
hypotheses may account for this phenomenon. The most
plausible explanation is the emergence of artifacts associ-
ated with high-norm tokens in the activation maps of larger
models, which are used to store information (Darcet et al.
2023). Interestingly, this decrease in score is not percepti-
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Figure 8: Impact of classifier backbone size on the perceived interpretability of image explanations. A notable decrease in
the PASTA-score is observed as the model size increases (left). Examination of image samples suggests that artifacts present in

the background are likely responsible for this decline.

ble in image perturbation-based XAl techniques, which re-
inforces the hypothesis that activation artifacts contribute to
the reduced interpretability of explanations.

Steering XAI methods towards better alignment

We propose to use the PASTA-score to enhance the inter-
pretability of an off-the-shelf XAI method, namely RISE
(Petsiuk, Das, and Saenko 2018). Our approach is as fol-
lows: while RISE generates random masks and selects the
one that has the best class scores Spropq, We introduce a reg-
ularization component based on the PASTA-score. Conse-
quently, instead of rating masks using Sprope, We employ
the following formula:

WRISE+PASTA = ASpasTa + (1 —A)Sproba,  (4)

where A € [0, 1] is a hyperparameter. When A = 0, the
generated explanation aligns with the original RISE method.
Conversely, if A = 1, the explanation produced corresponds
to a scenario that maximizes the PASTA-score. Note that set-
ting A = 1 would result in an explainer optimizing only for
human preferences while neglecting the true behavior of the
model, which may not yield useful explanations.

Upon analyzing the samples generated through the opti-
mization process, we initially observe a slight improvement
in the localization of highlighted objects. For instance, the
explanation depicted in Figure 9e exhibits fewer indecisive
zones and demonstrates enhanced precision compared to the
explanation shown in Figure 9d. Regarding the case where
A = 1, we note that the explanation begins to hallucinate
zones of interest while omitting others, like in Figure 9c.
Additionally, one can observe that the PASTA-score favors
large heatmaps. However, the optimized explanations do not
systematically overlap with the entire zone of the prediction,
suggesting that alignment with the segmentation map of the
object to assess the quality of saliency-based explanations,
as conducted in previous studies (Karmani et al. 2024; Li
et al. 2022b), may prove to be inadequate.

(b) A=0.7
F=0.0874

HAr=1

F = 0.0692 F=0.0731 F=0.0674
P =282 P =296 P=3.15

Figure 9: Optimized explanations derived through RISE
adjusted with the PASTA-score. Label of the top images:
home _or_hotel. Label of the bottom images: Renaissance.
F denotes the faithfulness correlation score, P denotes the
PASTA-score.

Conclusions

We introduce PASTA, a novel perceptual scoring method
designed to benchmark XAI techniques in a human-
centric manner. We collect a large-scale benchmark dataset
(PASTA-dataset), and use it for an assessment of XAl ex-
planations by human annotators. Based on this dataset, we
develop an automated scoring method (PASTA-score) that
spans previously unexplored modalities, effectively mim-
icking human preferences and allowing for circumventing
resource-intensive user studies for applications that may
benefit so. Deploying PASTA allows new quantitative ob-



servations: Our findings reveal a distinct preference for
saliency-based explanations, identify a negative impact of
backbone size, and demonstrate the potential to generate
more human pleasant explanations without compromising
faithfulness. These results not only align with human in-
tuition but also corroborate visual examples, affirming the
scalability and reliability of PASTA-score.

Limitations: First, the PASTA-score is trained on specific
datasets and explanation modalities, which may limit its
generalizability to other unseen domains, especially those
with domain-specific semantics. Second, the human prefer-
ences captured by the PASTA-dataset may inherit the intrin-
sic biases of human annotators. Third, although PASTA re-
duces the need for costly user studies, it remains an approx-
imation of subjective human judgment and may overlook
nuanced or task-specific interpretability needs, which may
justify the need for more resource-intensive ad-hoc human
interactions in downstream use cases.

Broader impact: Dynamic scoring approaches could be
explored to capture the evolving nature of XAl techniques
and their use in real-world applications. PASTA intends to
take a step towards creating a transparent and trustworthy Al
ecosystem. By aligning Al explanations with human pref-
erences, we aim to foster the development of more inter-
pretable Al systems that can be understood and trusted by
users. This work also introduces a perceptual metric, paving
the way for future research to implement the PASTA-score
as a perceptual loss aimed at enhancing the trustworthi-
ness of networks, drawing for example, inspiration from the
emerging use of LPIPS (Zhang et al. 2018) in tasks such as
image generation (Jo, Yang, and Kim 2020).
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A. PASTA-dataset: process
A.1 Generation of explanations

Classifier training The PASTA-dataset is designed to provide a benchmark for evaluating a wide range of XAl techniques
across different explanation modalities. To ensure robustness and versatility, our dataset is based on four, publicly available
datasets, each bringing distinct characteristics in terms of visual content and concept annotations. Choosing which task to focus
on is a tough question. We have chosen to focus on image classification. This task can be performed in many different domains,
but in order not to be too domain-specific, we decided to work on general datasets. These datasets enable the evaluation of both
image-based and concept-based XAl methods.

Then, the initial phase in constructing the PASTA-dataset involves training the various classifier models on which explana-
tions will be generated. Specifically, we utilize ResNet50 (He et al. 2016), ViT-B (Dosovitskiy 2020), ResNet50-BCos (Bohle
et al. 2024), CLIP-Linear (Yan et al. 2023), CLIP-QDA (Kazmierczak et al. 2024), X-NeSyL (Diaz-Rodriguez et al. 2022), and
CBM (Koh et al. 2020). These models are trained separately on each classifier’s dataset referenced below.

It is important to note that certain classifiers utilized in our platform necessitate concept-level annotations. Specifically, for
each sample, information regarding the presence or absence of each concept in the image, along with their respective bounding
boxes, is required. This detailed information is not natively available in each dataset. Consequently, we enhanced each dataset
to meet this requirement. The datasets and the corresponding modifications are as follows:

* COCO: A widely-used dataset known for its complexity and variety, containing 117k training images, 4.5k validation images
annotated with 80 object categories, which we consider to be concepts in the images. The labels correspond for this specific
dataset to indoor scene labeling, to do so, we took the subset of images of indoor scenes (53,051 images). Then, we labeled
the images using a scene label DNN trained on the MIT SUN.

 Pascal Part: This dataset focuses on detailed part-level annotations, providing fine-grained insights into object structure and
component relationships. It is composed of 13,192 training images, 39 concepts, and 16 classes.

* Cats Dogs Cars: A curated dataset featuring images of cats, dogs, and cars. The goal of this dataset is to explore if color
biases are present in the model or not. It is composed of 3,858 training images, 39 concepts, and 3 classes. Since this
network does not include annotated concepts, we used Grounding DINO (Liu et al. 2023) as an annotator. Since the number
of images that constitute Cate Dogs Cars is sufficiently small, we manually checked the bounding boxes generated and found
no significant errors.

* Monumai: A specialized dataset containing images of monuments, with annotations that include both the overall structures
and specific architectural features. It is composed of 908 images, 15 concepts, and 4 classes.

Each dataset in the classifier’s training datasets is annotated at two levels:

* Image-level annotations: These are traditional class labels (Table 4) or object categories that describe the primary content of
the image.

» Concept-level annotations: These describe specific, human-understandable features within the image, enabling the applica-
tion of Concept Bottleneck Models (CBMs) and other concept-based XAI methods. The list of concepts for each dataset is
detailed in Table 3.

Table 3: List of concepts used in all our CBMs. For each Dataset used, we choose a different set to fit the annotations.

Dataset Concepts

catsdogscars, pascalpart engine, artifact_wing, animal_wing, stern, tail, locomotive, arm, hair, wheel,
chain_wheel, handlebar, hand, headlight, saddle, body, bodywork, beak, head,
eye, foot, leg, neck, torso, cap, license_plate, door, mirror, window, ear, muzzle,
horn, nose, hoof, mouth, eyebrow, plant, pot, coach, screen

monumai horseshoe-arch, lobed-arch, pointed-arch, ogee-arch, trefoil-arch, serliana,
solomonic-column, pinnacle-gothic, porthole, broken-pediment, rounded-arch,
flat-arch, segmental-pediment, triangular-pediment, lintelled-doorway

€oCco person, backpack, umbrella, handbag, tie, suitcase, bicycle, car, motorcycle, air-
plane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter,
bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, frisbee,
skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surf-
board, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana,
apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair,
couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, key-
board, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase,
scissors, teddy bear, hair drier, toothbrush




Table 4: List of classes used in all the datasets used to train our inference models.

Dataset Labels

catsdogscars cat, dog, car

pascalpart  aeroplane, bicycle, bird, bottle, bus, car, cat, cow, dog, horse, motorbike, person,
pottedplant, sheep, train, tvmonitor

monumai Baroque, Gothic, Hispanic-Muslim, Renaissance

coco shopping_and_dining, workplace, home_or_hotel, transportation,
sports_and_leisure, cultural

In Figure 10, we observe the class distribution across the different datasets. While the distributions are not perfectly uniform,
they generally reflect the original composition of the datasets, ensuring that the diversity of the data is preserved in the evaluation
process.

As previously indicated, additional care must be taken when training CBMs. To explain the various training procedures for
our CBMs, we decompose them into two components: the concept extractor and the classifier. The concept extractor generates
an embedding from an input image, with each element representing a concept, while the classifier predicts the label from
this embedding. We categorize the CBMs we use based on the training methods for these two components. For CLIP-based
CBMs (LaBo, CLIP-linear, and CLIP-QDA), the concept extraction is performed in a zero-shot manner i.e., we only use
the training images and labels to train the classifier. For CBMs that require training the concept extractor (X-NeSyL and
ConceptBottleneck), we use the concept annotations provided by each dataset.

For explanations that involve the application of post-hoc techniques on black-box models, we selected the following DNNs:
ResNet 50, ViT, and CLIP (zero-shot). For ResNet 50 and ViT, a separate network was trained for each dataset. For CLIP
(zero-shot), we followed the standard procedure proposed by Radford et al. (2021), which classifies by selecting the highest
similarity score between the image embedding and all the text embeddings. For post-hoc explanations, we directly extract the
explanation after training.

As illustrated in Figure 11, the models used in this study achieve an accuracy of at least 59%. Notably, one of the models, the
zero-shot CLIP, exhibits difficulty specifically with the Monumai dataset, which explains some of the performance variability.
Despite this, the overall accuracy of the models remains relatively consistent across datasets. For CBMs, achieving high accu-
racy across all models required certain compromises, particularly with respect to the concepts used. Although for uniformity
we used the same concept sets across different models, it was not always guaranteed that the trained model is the best model.

Computation of explanations Upon completion of the training process for all classifiers, the subsequent phase involves the
generation of explanations for their respective inferences. A comprehensive enumeration of the XAI methods, along with the
corresponding classifiers to which each method is applied, is presented in Table 5. For this, we use for the computation of
explanations a subset of 250 images of the classifier’s dataset test split per dataset, that serve as the basis of the PASTA-dataset.
This diverse selection ensures a broader generalization of the XAl techniques across datasets being assessed. Note that, unlike
traditional datasets, our benchmark dataset comprises a triplet of images, explanations, and labels. This triplet enables us to
quantitatively assess the quality of XAl techniques.

Precisely, we tested 14 saliency-based XAl techniques and 6 concept-based XAl techniques, with a particular emphasis on a
variety of functioning of methods. A beneficial aspect of our approach is that many of the methods are tested on multiple back-
bone architectures. This aspect is particularly important, as many of the post-hoc methods evaluated in our study are designed
to be DNN-agnostic. In such cases, the XAI method is applied to independently trained models. For instance, GradCAM is
evaluated on ResNet50, ViT-B, and CLIP-zero-shot models, while SHAP-CBM is applied to both CLIP-QDA and the original
Concept Bottleneck model as proposed by Koh et al. (2020).

A brief description of each method is provided below to summarize their key features and mechanisms.

LIME (Local Interpretable Model-agnostic Explanations): LIME explains individual predictions of any classifier by
approximating it locally with an interpretable model. It perturbs the input and observes how the predictions change, identifying
the most influential parts of the input for the prediction.

SHAP (SHapley Additive exPlanations): SHAP is a unified approach to interpreting model predictions based on Shapley
values from cooperative game theory. It assigns each feature an importance value for a particular prediction, offering a sound
measure of feature importance.

GradCAM (Gradient-weighted Class Activation Mapping): GradCAM visualizes the regions in an image that contribute
to the classification. It uses the gradients of the target concept (e.g., a specific class) flowing into the final convolutional layer
to produce a coarse localization map highlighting important regions.

AblationCAM: AblationCAM improves GradCAM by iteratively removing parts of the input and observing the output effect
to identify important regions.

EigenCAM: EigenCAM applies PCA to the activations of the last convolutional layer to produce a saliency map. It highlights
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Figure 10: Class distribution across the different test sets.

the directions in which activations show the most variance, identifying critical features.

FullGrad: FullGrad computes gradients of the output with respect to both the input and intermediate layer outputs, aggre-
gating these gradients to generate a comprehensive saliency map.

GradCAMPlusPlus: GradCAMPlusPlus improves GradCAM with a refined weighting scheme for the gradients, allowing
better handling of multiple occurrences of the target concept.

GradCAMElementWise: GradCAMElementWise extends GradCAM by considering element-wise multiplications of gra-
dients and activations, producing more precise visual explanations.

HiResCAM: HiResCAM improves on class activation mapping by using higher-resolution feature maps for more detailed
visual explanations.

ScoreCAM: ScoreCAM improves CAM methods by using output scores to weight the activation maps’ importance, provid-
ing a more faithful saliency map without relying on gradients.

XGradCAM: XGradCAM integrates cross-layer information to combine saliency maps from different layers.

DeepFeatureFactorization: This method decomposes feature representations learned by a deep model into interpretable
factors. It provides insights into how features contribute to the model’s decisions.

CLIP-QDA-sample: This model uses the CLIP framework and applies Quadratic Discriminant Analysis (QDA) for classifi-
cation. This methodology employs counterfactuals on the conceptual representations of images to generate explanations.

CLIP-Linear-sample: This model also uses the CLIP framework but employs logistic regression for classification, thereby
offering interpretable explanations grounded in the transparency of the regression analysis.

X-NeSyL: X-NeSyL identifies concepts using object detection and applies a small DNN to these concepts, using the weights
assigned to each concept for explanation.

LIME CBM: This model generates a list of concepts and applies logistic regression. The methodology employs LIME to
identify and highlight the most significant concepts at the conceptual level for classification purposes.

SHAP CBM: This model generates a list of concepts and applies logistic regression, using SHAP on the concept level to
emphasize the most crucial concepts in classification.
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Figure 11: Accuracy across the different test sets of the different models.

Labo: Similar to CLIP-Linear-sample, Labo extracts human-interpretable concepts and maps them to the model’s internal
representations to facilitate more comprehensible decision-making explanations. This process leverages the transparency of its
classification mechanism, albeit utilizing a custom transparent network.

RISE: RISE (Randomized Input Sampling for Explanation) generates heatmaps by perturbing input regions and measuring
their impact on model outputs. This technique identifies the most influential regions in the model’s decision-making process.

BCos: BCos introduces specific layers to encourage alignment between weights and activation maps, which can then be used
for explainability.

The PASTA dataset comprises 21,100 instances, each containing images, predictions, and explanations. These instances
were subsequently evaluated by human annotators, resulting in 633,000 unique Likert ratings. This extensive evaluation was
achieved by asking six questions to five annotators for each instance. We aggregate these evaluations using majority voting
to favor consensus opinions. This dataset size is fairly standard in the Automated Essay Scoring literature (Lee et al. 2024),
where the objective is to train a model to predict human-assigned scores. Figure 12 shows the distribution of XAl techniques
applied across the datasets. To enhance the generalizability of our results, we increased the diversity of XAl techniques used.
This was achieved by not applying every technique to every image uniformly, allowing for a more diverse set of explanations
to be generated. This variability ensures that our analysis captures a broad spectrum of interpretability techniques, providing
deeper insights into the performance of XAl techniques across different datasets and models.

A.2 Human evaluation protocol

Once the explanations are performed, we can quantify the interpretability and usefulness of XAl techniques accurately, using
a human evaluation of the quality of explanations. Our human-centric approach complements existing approaches that focus
primarily on assessing the model’s internal behavior. For example, traditional evaluations of faithfulness measure how closely
an explanation corresponds to the model’s true functioning, while we assess in our dataset how the explanation fits human
expectations.

Desiratas First, we establish a comprehensive set of assessment criteria that are evaluated on a graded scale. We consolidate
different criteria from the literature into the following set of desiderata for XAl explanations that we wish to evaluate:

* Trustworthiness(Arrieta et al. 2020) measures the extent to which an explanation accurately reflects whether a model will
act as intended when facing a given problem.

* Robustness (Doshi-Velez and Kim 2017; Agarwal et al. 2022a; Yeh et al. 2019) assesses the stability and relevance of the
explanation across a broad range of models and inputs.

e Complexity (Nauta et al. 2023; Nguyen and Martinez 2020; Bhatt, Weller, and Moura 2021) checks whether the explanation
is both simple and informative, balancing clarity and detail.

* Objectivity (Bennetot et al. 2022) evaluates whether the explanation is interpreted consistently by the majority within a given
audience.

Evaluation Protocol Then, we apply an evaluation protocol, developed with the help of a psychologist, to ensure that an-
notators fully understand the task and the expectations. This includes annotator training and close monitoring throughout the
process. Interfaces, as well as the formulation of questions, play a key role in the quality of the annotations (Pommeranz et al.
2012), and their design must be considered cautiously to avoid confounding cognitive biases. The formulation of the questions



Table 5: XAI methods included in our dataset. Name denotes the identifier of the utilized XAl method. Functioning specifies
the mechanism of the explanation computation, including methods that rely on gradient weighting (Gradient), probing reac-
tions to localized perturbations (Perturbation), abstracting activations through factorization (Factorization), leveraging directly
interpretable latent spaces (Interpretable latent space), or searching for counterfactuals (Counterfactual). Attribution indicates
the data type on which the attribution weights are applied: either on input images (Image) or on a computed representation of
the image as concepts (Concepts). Stage indicates whether the explanation is produced by a ante-hoc or a post-hoc process.

Name Functioning Attribution on Stage Applied on

BCos (Bohle et al. 2024) Interpretable latent space Image Ante-hoc ResNet50-BCos

GradCAM (Selvaraju et al. 2017) Gradient Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
HiResCAM (Draelos and Carin 2020) Gradient Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
GradCAMElementWise (Pillai and Pirsiavash 2021) Gradient Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
GradCAM++ (Chattopadhay et al. 2018) Gradient Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
XGradCAM (Fu et al. 2020) Gradient Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
AblationCAM (Ramaswamy et al. 2020) Perturbation Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
ScoreCAM (Wang et al. 2020) Perturbation Image Post-hoc  ViT, ResNet50

EigenCAM (Muhammad and Yeasin 2020) Factorization Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
EigenGradCAM (Muhammad and Yeasin 2020) Gradient+Factorization — Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
FullGrad (Srinivas and Fleuret 2019) Gradient Image Post-hoc  ViT, ResNet50

Deep Feature Factorizations (Collins, Achanta, and Susstrunk 2018) Factorization Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
SHAP (Lundberg and Lee 2017) Perturbation Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
LIME (Ribeiro, Singh, and Guestrin 2016) Perturbation Image Post-hoc  ViT, ResNet50, CLIP (zero-shot)
X-NeSyL (Diaz-Rodriguez et al. 2022) Interpretable latent space Concepts Ante-hoc X-NeSyL

CLIP-linear-sample (Yan et al. 2023) Interpretable latent space Concepts Ante-hoc CLIP-linear

CLIP-QDA-sample (Kazmierczak et al. 2024) Counterfactual Concepts Ante-hoc CLIP-QDA

LIME-CBM (Kazmierczak et al. 2024) Perturbation Concepts Post-hoc CLIP-QDA, ConceptBottleneck
SHAP-CBM (Kazmierczak et al. 2024) Perturbation Concepts Post-hoc CLIP-QDA, ConceptBottleneck
RISE-CBM (Petsiuk, Das, and Saenko 2018) Perturbation Concepts Post-hoc  ConceptBottleneck

has been carefully chosen to ensure that they are fully understood by each annotator. To maintain consistency and reliability, all
annotators undergo a training session before starting the actual annotation task. This training familiarizes them with the XAI
techniques, evaluation criteria, rating scale and datasets, ensuring a uniform understanding of the task and the expectations.

The annotation process took place via an online web application, created and deployed by a contracting company. 24 partic-
ipants were recruited to take part in the annotation process. These participants ranged in age from 19 to 37 (mean age 24.58,
standard deviation 3.19). Figure 13 shows the age distribution. Among the participants, 7 identified themselves as male, 17 as
female, O as non-binary, O did not wish to say. All participants were based in India. Each participant’s task was to annotate
147 explanations. To address the subjectivity inherent in the task, each instance, comprising a triplet of image, explanation, and
label, is evaluated by five different annotators.

Concretely, annotators are shown a succession of samples that consist in an image, a prediction, and an explanation. They
are then asked to respond to a set of questions corresponding to the desiderata outlined above (indicated in italics):

e Q1: Is the provided explanation consistent with how I would explain the predicted class? Trustworthiness

* Q2: Overall the explanation provided for the model prediction can be trusted? Trustworthiness

* Q3: Is the explanation easy to understand? Complexity

* Q4: Can the explanation be understood by a large number of people, independently of their demographics (age, gender,

country, etc.) and culture? Objectivity

Q5: With this perturbed image, to what extent has the explanation changed ? (Examples with good predictions and light

perturbations) Robustness

* Q6: With this perturbed image, to what extent has the explanation changed? (Examples with bad predictions and strong
perturbations) Robustness

A screenshot of the interface used by the annotators to answer is available in Figure 14. The first four questions (Q1 to Q4)
concerned Section 1, which showed the original image on the left and the explanation on the right. These first four questions
enabled participants to assess the levels of reliability, complexity and objectivity of the explanation. The fifth question (Q5)
concerned Section 2, showing the slightly disturbed original image and the corresponding explanation. The sixth question (Q6)
concerned Section 3, showing a more disturbed image and the corresponding explanation. These last two questions were in-
tended to assess the robustness of the XAl technique. For each question, participants had to answer with a 5-point Likert scale.
In question 5, we apply a weak data augmentation to the input image, which is designed to preserve the classifier’s prediction.
This allows us to evaluate whether the explanation changes when the prediction remains constant. Measuring changes in expla-
nations is challenging, as studied by (Fel et al. 2022b). To address this, we leverage human evaluators who can more effectively
discern subtle changes in explanations. Q6 follow a similar approach but involve strong data augmentation. The goal here is
to determine if the explanations remain consistent when the predictions change due to data augmentation or variations in the
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Figure 12: Distribution across the different XAI techniques across the different datasets.

models. If the predictions change, the explanations should reflect these changes. For more details, refer to Figure 15.

We outline the perturbation process below. To capture a diverse range of model responses, we applied 12 distinct types
of perturbations, each with a tunable magnitude parameter to adjust perturbation intensity. The transformations include both

standard torchvision operations (https://pytorch.org/vision/0.9/transforms.html) and custom-designed modifications:

* Color Jitter (Brightness): Adjusts the brightness of the image. The magnitude lower the brightness.

* Color Jitter (Contrast): Modifies image contrast. The magnitude lower the contrast.

* Random Resized Crop: Performs a random crop and resize. The magnitude augments the scale of the crop.

* Gaussian Blur: Blurs the image using a Gaussian filter. The magnitude augments the values of the standard deviation.

* Random Perspective: Applies a perspective transformation. The magnitude augments the distortion scale.

* Brightness Transform: Independently changes brightness levels. The magnitude lower the brightness.

* Color Transform: Adjusts color balance. The magnitude augments the saturation.

¢ Contrast Transform: Further modifies contrast. The magnitude augments the contrast.

» Sharpness Transform: Changes image sharpness. The magnitude augments the sharpness factor.

* Posterize Transform: Reduces color depth. The magnitude augments the number of bits to keep for each channel.

* Solarize Transform: Inverts colors above a certain threshold. The magnitude augments the threshold.

* Random Masking: Masks out random sections of the image by applying patches. The magnitude augments the number of

patches.
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Figure 13: Age distribution of the annotators.

Our aim was to avoid influencing responses and to eliminate any ambiguities that could lead to inaccurate answers. Human
decision-making, especially when it involves assessing the quality of explanations, is complex. To address this, we provided
training on deep learning and various XAI techniques, ensuring the content was clearly understandable by the annotators.
After the initial training, the annotators answered the questions, and we held weekly meetings to clarify any confusion they
encountered.

Each explanation is rated on a five points Likert scale, where one star indicates a total disagreement with the annotator’s
reasoning, and five stars represent total agreement.

B. PASTA-dataset: Additional analysis
B.1 Comparison with existing benchmark

We compiled a set of related works that perform human assessment in the context of XAl Specifically, we noted key details
such as the dataset size, the number of participants involved, the diversity of questions posed, and the overall scope of the study,
where this information was available. A summary of these details is presented in Table 6.

The PASTA-dataset distinguishes itself in several key aspects. First, it evaluates a significantly higher number of XAI methods
compared to existing datasets. This design emphasizes the diversity of techniques over the number of samples tested, offering
a complementary approach to datasets that prioritize varied input data but evaluate fewer methods. Second, PASTA involves
the lowest number of participants among the datasets listed, allowing for reduced variability due to potential outliers and better
control over annotator behavior. However, this could introduce inherent biases tied to the limited participant pool. Finally,
the PASTA-dataset provides a substantially larger number of samples and uniquely combines image-based explanations with
concept-based explanations, making it the first dataset to address both modalities simultaneously.

B.2 Comparison with existing metrics

Faithfulness: How much does the explanation describe the true behavior of the model? A number of different ways to
compute faithfulness exist, but they all broadly fit the same framework of measuring how much model predictions change in
response to input perturbations (Bhatt, Weller, and Moura 2021; Alvarez-Melis and Jaakkola 2018a; Yeh et al. 2019; Rieger
and Hansen 2020; Arya et al. 2019; Nguyen and Martinez 2020; Bach et al. 2015; Samek et al. 2016; Montavon, Samek, and
Miiller 2018; Ancona et al. 2017; Dasgupta, Frost, and Moshkovitz 2022). Intuitively, an explanation is faithful if perturbing
regions deemed irrelevant by the explanation bring little to no change in model output, whereas perturbing regions deemed
relevant bring a considerable change. In this analysis, we resort to the evaluation protocol outlined in Azzolin et al. (2025),
which generalized a number of common faithfulness metrics into a common mold'. Specifically, faithfulness is estimated as the
harmonic mean of sufficiency (Suf) and necessity (Nec), which account for the degree of prediction changes after perturbing
irrelevant or relevant portions of the input, respectively. Formally, given an input image « with associated explanation e, and a

!"They focus on faithfulness for graph explanations, but the evaluation protocol is aligned with that of images.



GTCLASS: SPORTS_AND_LEISURE

SECTION-1: ORIGINAL IMAGE

PREDICTED CLASS ORIGINAL - SPORTS_AND_LEISURE

SECTION-2: IMAGE PERTUBATED (SAME)

model explanation of perturbation image (diff)

PREDICTED CLASS PERTUBATED - HOME_OR_HOTEL

Figure 14: Screenshot of the annotation interface. Questions are on the right-part of the interface. Middle panel shows Section
2: slightly disturbed original image with the explanation.

model to be explained py(Y | ), sufficiency and necessity are defined as:

Sufupn (T, €) = Earnppldpo(- | ) || po(- | )] ©)
Necdvpc (m,e) = Ew’NPc [d(p9(~ | :13) ” pg(' | ml))]v

where d is a divergence between distributions of choice, and pc and pg are interventional distributions specifying the set of
allowed perturbations to the explanation and its complement, respectively. Eq. 5 are then normalised to [0, 1], the higher the
better, via a non-linear transformation, i.e., taking exp(—Sufg,,(x, e)) and 1 — exp(—Necg,,, (x, €)). Operationally, for a
given instance (x, e) sampling from pc (i, e) equals to generating a new image where the complement of the explanation is
left intact, and where perturbations are applied to the explanation. The set of allowed perturbations p- and pg can be arbitrarily
defined, and different techniques are oftentimes reported to give different interpretations (Hase, Xie, and Bansal 2024; Rong
et al. 2022). To avoid this confounding effect, we report the results for three different baseline perturbations, namely uniform
and Gaussian noise, and black patches, along with a more advanced information-theoretic strategy named ROAD (Rong et al.
2022). Since explanations are oftentimes in the form of soft relevance scores over the entire input, a threshold is needed to tell
apart relevant from irrelevant image regions. To avoid relying upon this hard-to-define hyperparameter, we aggregate the scores
across multiple thresholds keeping only the best value. Therefore, for each explanation threshold value, pixels are sorted based
on their relevance” and progressively perturbed until reaching the fixed threshold value, while leaving the others unchanged.
For each of those samples, we evaluate the normalized Eq. 5 where d is the absolute difference in class-predicted confidence
between clean and perturbed images, i.e., [pg(§ | ) — po(¥ | =’)|, and average across the number of perturbed pixel for
each threshold value. This procedure is detailed in Algorithm 1. Considering the novelty of our human driven study and the
existence of such metrics, an interesting experiment is to measure if the the rating given by humans correlate with ROAD.
Results, shown in Table 7 indicates a rather weak correlation. We conclude that our human scores indeed cover an aspect of
explanation quality unrelated to that of perceptual quality, as predicted by Biessmann and Refiano (2021). The results cover only

?For sufficiency, pixels are sorted in ascending order. For necessity, in descending order.
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(b) A strong perturbation is applied, leading to a label change.

Figure 15: Samples corresponding to questions 5 and 6.

Table 6: Overview of datasets and human evaluation frameworks for XAI methods. Name refers to the reference of the
dataset used. Annotations refers to the type of labels used: Likert refers to Likert scale, Saliency refers to pseudo saliency maps,
2AFC refers to two alternative forced choices, Clictionary refers to the clicktionary game defined in (Dawoud et al. 2023),
MCQ refers to multiple-choice question, and Binary refers to binary choises. Ngqmpies refers to the total number of samples
constituting the dataset. Np,,; refers to the number of participants involved during the labeling. Modality refers to the different
modalities the dataset deals with: I refers to image, C to concepts, and T to text. N refers to the number of different questions
asked to the annotators. Nx 4 refers to the number of XAl methods tested during the experiments, No indicates that the dataset
only asked to label data with what they consider as ground truth explanation, without further comparison with XAI methods.
Npatq refers to the number of different samples (for example images) shown to annotators.

Name Annotations Nsamples Npare Modality Ng Nxar  Npata
PASTA-dataset Likert 633,000 24 1+C 6 20 1000
Yang, Folke, and Shafto (2022) Saliency, 2AFC 356 46 1 2 1 89
Colin et al. (2022) Classification 1,960 241 I 1 6 NA
Dawoud et al. (2023) Clicktionary 3,836 76 1 1 3 102
Mohseni, Block, and Ragan (2021) Saliency 1,500 200 I+T 1 No 1,500
Herm et al. (2021) Likert NA 165 C 1 6 NA
Morrison et al. (2023) Clicktionary/QCM 450 50 I 1 3 39
Spreitzer, Haned, and van der Linden (2022)  Likert/Binary 4,050 135 C 9 2 NA
Xuan et al. (2023) Likert/Binary 3,600 200 C 4 2 1,326

image-level attribution methods (see Table 5), as CBMs do not support such kinds of input-level manipulations. Our findings
reinforce the idea that human evaluations and computational metrics measure complementary aspects of XAI methods. Human
evaluations excel at assessing the usefulness of explanations, aligning with their primary purpose of serving a human audience.
In contrast, computational metrics, such as faithfulness, focus on evaluating the alignment between the explanation and the
model’s actual internal functioning. This aspect lies beyond the reach of human judgment, as humans cannot directly access or
fully comprehend the internal mechanisms of the model. Evaluating the quality of an explanation typically involves estimating
different and potentially orthogonal aspects of it. In addition to the perceptual quality addressed in this work, others can be
numerically simulated by having access to model weights. In this additional analysis, we consider some of those aspects and
measure how much they correlate with human scores.

Robustness: Robustness roughly refers to how stable the explanation is to small input perturbations. Different ways to esti-
mate it exist (Alvarez-Melis and Jaakkola 2018b; Montavon, Samek, and Miiller 2018; Yeh et al. 2019; Dasgupta, Frost, and
Moshkovitz 2022; Agarwal et al. 2022a). In our analysis, we focused on MaxSensitivity (Yeh et al. 2019), which applies ran-
dom input perturbations to the entire image and measures the pixel-wise difference between the original explanation, and the
one obtained on the perturbed sample. Formally:

MaxSensitivity = max|le — €'|| (6)

where e and e’ are the explanations for the original and the perturbed image, respectively. Again, different perturbation tech-
niques can be applied, and we resort to the two simple baselines, namely Uniform and Gaussian noise. No normalization is



Table 7: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coefficient (SCC) between faithfulness
computed with different methods and human scores. Values are presented with p-values in parentheses.

ROAD Black patches Uniform noise Gaussian noise
PCC ScC PCC ScC PCC SCC PCC SCC

Q1  0.029 (1e-4) -0.047 (8e-10) 0.111 (1e-47) 0.077 (1e-23)  0.037 (le-6) -0.036 (2e-6)  0.036 (le-6) -0.032 (3e-5)
Q2 0.030 (le-4) -0.044 (1e-9) 0.108 (3e-45) 0.075 (2e-22)  0.034 (9e-6) -0.037 (1le-6)  0.034 (1e-5) -0.032 (3e-5)
Q3  0.035(6e-6) 0.003 (7e-1) 0.079 (3e-25) 0.065 (2e-17)  0.029 (2e-4) 0.005 (5e-1)  0.027 (le-4) 0.004 (6e-1)
Q4 0.033 (le-5) -0.008 (3e-1) 0.081 (3e-26) 0.062 (1le-15)  0.030 (9e-5) -0.001 (9e-1)  0.029 (2e-4) -0.001 (9e-1)
Q5 -0.060 (8e-15)  0.003 (7e-1) -0.067 (3e-18) -0.028 (1e-4) -0.066 (6e-18) -0.025 (1e-3) -0.065 (3e-17) -0.022 (4e-3)
Q6 -0.019 (1e-2) 0.059 (le-14) -0.053 (4e-12) -0.031 (6e-5) -0.023 (1e-3) 0.029 (le-4) -0.022 (5e-3) 0.030 (le-4)

Algorithm 1: Pseudo code for computing sufficiency/necessity

Require: Image x, explanation e, and set of explanation-size thresholds 7.
1: values = ||
2: for each threshold ¢t € 7 do

3:  if computing sufficiency then
4: Sort pixels of « in ascending order of relevance scores from e.
5:  else
6: Sort pixels of « in descending order of relevance scores from e.
7:  endif
8 arr + ||
9:  for ¢ in range(start=1, end=t, step=2) do
10: 2’ < Apply the specified perturbations to the first % sorted pixels.
1 Append d = [py (i) | x) — po(§ | x')| to arr
12:  end for
13:  if computing sufficiency then
14: Append exp(—mean(arr)) to values
15:  else
16: Append 1 — exp(—mean(arr)) to values
17:  endif
18: end for

19: Output: max(arr)




Table 8: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coefficient (SCC) between MaxSensi-
tivity computed with different perturbation strategies and human scores. In parentheses, the respective p-values.

Uniform noise Gaussian noise

PCC ScC PCC SCC
Q1 -0.262 (9e-178)  -0.326 (4e-280) -0.250 (4e-165) -0.301 (7e-243)
Q2 -0.258 (4e-172) -0.323 (4e-273) -0.247 (2e-161)  -0.297 (7e-236)
Q3 -0.164 (7e-69) -0.193 (3e-95) -0.175 (1e-80) -0.188 (3e-93)
Q4 -0.176 (6e-80)  -0.201 (2e-103) -0.182 (8e-88) -0.190 (3e-95)
Q5 0.136 (9e-48) 0.169 (1e-73) 0.104 (2e-29) 0.103 (6e-29)
Q6 0.101 (5e-27) 0.125 (5e-41) 0.100 (3e-27) 0.132 (1e-46)

Table 9: Pearson Correlation Coefficient (PCC) and Spearman rank Correlation Coefficient (SCC) between Sparseness

and human scores. In parentheses the respective p-values.

Complexity
PCC Scc
Q1 -0.137 (4e-72) -0.134 (3e-69)
Q2 -0.134 (6e-69) -0.131 (5e-66)
Q3 -0.080 (3e-25) -0.075 (9e-23)
Q4 -0.079 (6e-25) -0.073 (2e-21)
QS -0.085 (1e-28) -0.087 (6e-30)
Q6  0.052 (9e-12)  0.073 (9e-22)

applied, therefore the values are the higher the worse. More advanced techniques like ROAD (Rong et al. 2022) cannot be
applied in this context, since the perturbation is applied uniformly over the entire image. In Table 8, we report the correlation
between MaxSensitivity and human scores, outlining a non-significant correlation with the metric and some questions. Sur-
prisingly, the most correlated questions are Q1-4, which are not requesting humans to assess the stability of the explanation,
something instead partially addressed by Q5 and Q6. However, the correlation is very weak anyway, questioning any further
claims.

Complexity: As humans have an implicit tendency to favor simple alternatives when facing a comparison between different
hypotheses, providing simple and compact explanations is vital for human-machine synergy (Cowan 2001). Alternative meth-
ods for estimating the complexity of an explanation are available, from simple above-threshold counting to more advanced
information-theoretic techniques (Chalasani et al. 2020; Bhatt, Weller, and Moura 2021; Nguyen and Martinez 2020). To test
whether those metrics are correlated to human scores, we report in Table 9 the correlation between human votes and Sparseness
(Chalasani et al. 2020), which estimates explanation complexity as the Gini Index (Hurley and Rickard 2009) of the absolute
values of the image attribution. The result is a metric value in the range [0, 1], where higher values indicate more sparseness.
The computation of the Gini index is detailed in Algorithm 2.

Algorithm 2: Pseudo code for Gini coefficient calculation from Hedstrom et al. (2023)

Require: Explanation e

1: array < flatten(e)

2: array + |array| {Take absolute value}

3: array + sort(array, ascending = True)
4: index < arange(1, array.shapel0] + 1)
5: n + array.shape[0]

6: return > (2-index—n—1)-array

n-y_ array

We used the Quantus library (Hedstrom et al. 2023) for implementing the previous metrics, and we present the raw metric
values in Table 10, aggregated by explainer and model. Overall, none of the above metrics exhibits a significant correlation with
user scores.

B.3 Dataset analysis

To further explore annotator preferences, we identified the top-12 XAI techniques selected by each annotator and visualized
the results in the histogram shown in Figure 16. Unlike Table 11, this analysis focuses on the top-12 techniques per annotator,
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Figure 16: Histogram showing the top-12 XAI techniques preferred by each annotator.

removing the influence of votes among the top-12 techniques to reduce noise and better capture annotator preferences. From
this figure, we observe that classical methods such as LIME and SHAP stand out as one of the most frequently preferred. This
suggests a strong preference for well-established saliency-based methods. Additionally, there is a notable inclination towards
methods that probe the model’s reaction to input perturbations. A distinct aspect is the inclusion of B-cos, which generates
explanations through the incorporation of a dedicated layer, offering a unique mechanism compared to other perturbation-based
techniques. Of the 11 most popular techniques among annotators, only two are based on CBMs, indicating a general preference
for saliency maps over concept-based explanations.

Next, we aggregated the scores using majority voting and calculated QWC scores to measure the agreement between in-
dividual annotators and the aggregated score. We further analyzed the QWC scores by gender and age groups to assess any
systematic differences in interpretation. As shown in Figure 17, the kappa scores indicate that there is generally consistent
agreement across different age and sex groups, although older annotators show slightly less consistency. This highlights that
while demographic factors may introduce some variation, they do not substantially impact the overall interpretability evalu-
ation. Notable exceptions are observed for Q3 and Q4, which address the notions of objectivity and clarity. The decrease in
agreement can be attributed to the increased subjectivity required by these questions compared to others.

In Table 11, we present the average mode of votes for each XAl technique. The primary observation is the challenge in
discerning clear differences among XAI methods, largely attributable to their high sensitivity to the specific backbones to
which they are applied. Regarding the differences among questions, we note significant similarities between Q1 and Q2, as well
as between Q3 and Q4. It is particularly noteworthy that raters globally assessed explanations as clearer and more objective,
with mean scores of 3.46 for Q3 and 3.44 for Q4, compared to their faithfulness to the model, which had mean scores of
2.83 for Q1 and 2.82 for Q2. Beyond confirming the multifaceted nature of human assessment, this underscores the difficulties
encountered by current XAI methods in conveying the behavior of the model, rather than merely creating clear methods for
displaying explanations.

C. PASTA-dataset: Extra questions

To enhance the study, we solicited responses from a subset of annotators (15 annotators) to address additional questions. These
questions did not directly involve generated explanations. Instead, the questions focused on their overall perceptions of XAI
and how they personally approach explanations. Consequently, this section aims to take a broader perspective and reflect more
comprehensively from a user study viewpoint.
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Figure 17: Cohen’s kappa statistics showing agreement between annotators, aggregated by sex and age groups.

C.1 Image labeling

For each image, participants had to explain what led them to classify the displayed image as the model’s prediction. Participants
responded openly using a text form.

A first set of questions aims at having annotators establish a baseline, i.e., by interpreting and explaining what makes an
image recognizable as a specific object or class. The process is constituted of theses two questions:

* QO.1: What part makes you classify this image as ***? (write an explanation extracting concepts)
* QO0.2: What part of the input helps the prediction? (draw bounding boxes on the image)

Similarly, they were asked to describe the elements of the image that helped them make the decision to classify the image
as the model did. These two questions (QO0.1 and QO0.2) are used to establish a baseline for interpreting what makes an image
recognizable as a specific object or class, and what are the salient features of the images that would explain this choice.

We investigated potential biases in the annotations themselves by examining the differences in how annotators approached
CBM-based and saliency-based explanations. For CBM explanations, we focused on the text written by annotators in response
to question QO.1, assessing whether annotators preferred explanations that closely resembled their own textual responses.
To quantify this, we transformed CBM explanations into text by concatenating the top concepts used in the explanation and
calculated the BLEU (Papineni et al. 2002) and ROUGE scores (Lin 2004) between these explanations and the annotators’ text
responses. As shown in Figure 18, the ROUGE score reveals a slight correlation between the explanations and the annotators’
expectations for questions Q1, Q2, Q3, and Q4. This suggests that annotators are inclined to favor explanations that align with
their preconceived notions, potentially introducing a bias toward consistency with their initial answers.

Moreover, we observed that questions Q1, Q2, Q3, and Q4 exhibit high intercorrelation, as do questions Q5 and Q6. This
clustering indicates that annotators tend to evaluate explanations similarly across these sets of questions, which may reflect
underlying patterns in how different types of explanations are perceived.

For saliency-based explanations, we analyzed the bounding boxes provided by annotators in response to question Q0.2. We
evaluated the correlation between various metrics and the annotators’ answers, including:

1. the total sum of pixel intensities in the saliency map (“SUM_all”),

2. the sum of pixel intensities within the area of the image identified by the bounding box (“SUM_pos”),
3. the sum of pixel intensities outside the bounding box (“SUM_neg”),

4. the entropy of the saliency map (“Entropy”).

Figure 18 shows that questions Q1, Q2, Q3, and Q4 are highly correlated with each other, as are questions Q5 and Q6.
Additionally, all metrics except for “SUM_pos” show some correlation with questions Q1-Q4. This suggests that annotators
may focus heavily on background features and salient objects when answering these questions, potentially overlooking finer
details in the bounding box area.

Overall, these analyses highlight several potential biases in the dataset. Annotators exhibit a preference for certain types of
explanations, particularly saliency maps, and tend to favor explanations that align with their expectations, as evidenced by the
correlation between their text responses and the explanations. Additionally, while demographic factors such as age and gender
do not significantly impact the overall evaluation, the slight decrease in consistency among older annotators warrants further
investigation. The study involved 15 annotators, all from the same cultural background, which may introduce some shared
perspectives or biases. To mitigate this, future studies could benefit from a more diverse group of annotators.
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Figure 18: Correlation between the various questions and key metrics for saliency and CBM explanations. For CBM,
the criteria used are the BLEU (Papineni et al. 2002) and ROUGE scores (Lin 2004) scores between the explanation and the
text from question QO.1. For saliency maps, the metrics include the total pixel sum (SUM_all), the sum of pixels within the
annotator-provided bounding box (SUM_pos) from question Q0.2, the sum of pixels outside the bounding box (SUM_neg), and
the entropy of the saliency map (Entropy).

C.2 Desiratas ranking

After the annotation process is completed, evaluators are presented with a set of questions assessing their stance on the questions
asked.

In addition to annotating the samples that comprise the PASTA-dataset, each participant in the study was asked to respond to
the following questions:

* Q7: Could you rank the different qualities of the explanation in order of importance? Expectedness, Trustworthiness, Com-
plexity, Robustness, Objectivity.

* Q8: Can you please order the different questions from Q1, Q2, Q3, Q4, Q5, and Q6 from the less important to the more
important questions to assess the quality of the explanation?

* Q9: Can you please order the different questions from Q1, Q2, Q3, Q4, QS5 and Q6 from the most difficult to the easiest?

The results for Q7 are presented in Table 12. The data indicate that evaluators place a higher value on Trustworthiness and
Complexity, while Objectivity is ranked significantly lower. This finding aligns with the work of Liao et al. (2022), who asked
a similar question but focused on a pool of experts.

Table 13 summarizes the results for Q8 and Q9. According to user feedback, Q1 is deemed the most important question.
Notably, there is a strong correlation between the responses to Q8 and Q9: the questions perceived as easiest to answer are also
regarded as the most important. Interestingly, there is a low correlation between the importance assigned to each question and
the axioms they represent, highlighting a distinction between the perception of an axiom and the execution of the associated
task. Furthermore, both Q8 and Q9 reveal a separation in ranking among Q1 to Q4 and Q5 and Q6, which resonates with the
dataset analysis.

D. PASTA-score: Implementation details

D.1 Technical information

Hyperparameters In all experiments, we employed the Adam optimizer (Kingma and Ba 2017) with a batch size of 256,
training for 600 epochs at a learning rate of 2 x 10~%. Additionally, we configured the parameters as follows: o was set to 1, 3
to 0.001, and ~y to 0.01. We also applied a weight decay of 1 x 10~5. The model utilized a hidden layer size of [512, 64]. For
concept-based explanations, we used the top 15 concepts, with no template. For Q3 to Q6, we excluded a part of the annotations
related to COCO, due to a presence of outliers.

Regarding the division between the training, validation, and test sets, we imposed restrictions on the selected samples to
ensure no overlap in XAI methods or images on which the explanations are based, thereby preventing overfitting. To achieve
this, we proceeded as follows. First, we assigned an ID to each of the images (IMG_ID) and each of the XAI methods (XAI_ID).
As mentioned in the dataset specifications, IMG_ID € [1; 1000] and XAILID € [[1; 46]. Secondly, given these sets and a seed,
we randomly selected 70% of the XAI_ID and 70% of the IMG_ID. Thirdly, we included in the training set only those samples
that presented both a valid XAI_ID and IMG_ID (- ((XAILID_train = XAILID_test) V (IMG_ID_train = IMG_ID_test))). We



followed the same procedure with the remaining set to construct the validation and test sets. All remaining samples were
discarded for the run.

Evaluation metrics The quadratic weighted Cohen’s Kappa (QWK) measures inter-rater agreement, adjusting for chance
and penalizing disagreement based on its magnitude. The formula is:

> Wi Oij — 30 wij By

QWK = ; (N
1=, wijEij
where:
* O;; and E;; are the observed and expected frequencies, respectively.
s wy; =1-— % is the quadratic weight for categories ¢ and j.
The Mean Squared Error (MSE) measures the average squared difference between predicted and actual values. It is given by:
N
1 X
MSE = EI;(mk — )2, (8)

The Spearman Correlation Coefficient (SCC) measures the rank correlation between two variables. It is calculated using the
ranks of the data points and is given by:
6 d;

Ns(NZ —1)
where d; is the difference between the ranks of each pair of values.

SCC=1- )

Loss Functions Here, we define the three losses used to train our PASTA-model.
The Cosine Similarity Loss measures the cosine similarity between the predicted explanations scores 7, and the ground
truth explanations scores my, ensuring alignment in their direction:

Ziv;l MMy,

No - N,
\/Ek:l g, \/Zk:l mj,
The Mean Squared Error (MSE) loss measures the squared difference between predicted and true explanations, penalizing
larger errors more heavily:

Ly=1- (10)

N,
1 X
Linse = E;(mk—mﬁ (1D
This Ranking Loss ensures the correct ranking of explanations by penalizing cases where the predicted ranking contradicts
the true ranking:

1
Ly =— > max(0, — (g, — mig,)(mx, — mx,)) (12)

Ns k1,k2

Here, N, represents the total number of pairs considered for the ranking loss.

Computational resources The experiments were conducted using a V100-32GB GPU. The training and inference times are
summarized in Table 14. It is important to note that, for both inference and testing, the majority of the computational time
is dedicated to precomputing VLM embeddings, as the scoring network itself is relatively lightweight and requires minimal
computational resources.

D.2 Ablation studies
Aggregation of the votes

Formulas In the dataset, we have access to 5 votes per question. Then, if we denote the set of votes as {mz [a]}i\[:"l, where
N, = 5 is the number of annotations: , .
Mode(m!) = arg max Count(m?[a]), (13)
a
where Count(mg [a]) represents the frequency of each vote a in the set.

Given the subjective nature of the annotations and the presence of multiple responses to the same question (five answers per
question), we explored different methods for determining the ground truth. In Table 15, we tested how PASTA-score training is
affected when using the mean, mode, or median as the ground truth. Since this parameter significantly impacts the dispersion
of the samples, it is not surprising that the results vary, particularly when using the mean. However, in all our experiments, we
opted to use the mode, as phenomena of high non-consensus were observed.



Add of label information in the PASTA-score embedding. In the current iteration of the PASTA-score, information regard-
ing the predicted class is integrated into the embeddings supplied to the scoring network. Specifically, each predicted label is
encoded as a one-hot vector and concatenated with the embedding. In this study, we aim to measure the impact of this design
choice by comparing it with an alternative approach that utilizes only embeddings as input to the scoring network.

As illustrated in Table 16, the integration of label information exhibits a positive influence, aligning with the hypothesis
that such contextual data enhances the comprehension of human behavior patterns affecting ratings. However, the observed
improvement is modest. This phenomenon can be attributed to several factors, including the extensive number of labels em-
ployed across the datasets (26), which is commensurate with the quantity of unique images. As a result, the inclusion of label
information may introduce redundancy or lead to overfitting, thereby influencing the efficiency of the scoring mechanism.

Scoring functions In this section, we examine the influence of various scoring network architectures on performance. Specif-
ically, we tested alternatives such as Ridge Regression, Lasso Regression, Support Vector Machines. The results of these
experiments are presented in Table 17.

By analyzing the performance of the different scoring functions, we observe that PASTA, implemented with a multi linear
perceptron and leveraging the loss functions described in Section , achieves superior results in terms of the Quadratic Weighted
Kappa score and Spearman Correlation Coefficient. These outcomes highlight its effectiveness in accurately ranking labels.
However, SVM exhibit lower Mean Square Error, suggesting better numerical precision in predicting label values. Our primary
objective is to develop a robust metric for ranking XAI methods. As such, we place greater emphasis on metrics that assess
ranking accuracy. Based on this criterion, the PASTA framework is favored over alternative scoring networks due to its superior
performance in rank-oriented evaluations.

Explanation embeddings

This section presents several ablation studies that informed the development of our current methodology for embedding expla-
nations. Throughout these experiments, the Siglip model was utilized as the VLM encoder.

Saliency Regarding saliency-based explanations, a key question arises about what should be considered as the image repre-
senting the explanation. Two variants were considered: using the heatmap visualization that is presented to users, as shown in
Equation 1, or the input image as defined as:

(bimage (ez ) = VLMimage ((Bz X 6{ ) (14)

The element-wise multiplication of the input image with the saliency map selectively blurs the image, with regions correspond-
ing to lower activation values being blurred, while areas with higher activation values remain clear.

The results are presented in Table 18, where a slight improvement is observed in favor of using the image as a heatmap. This
can be attributed to the fact that, despite being more computationally ambiguous, the heatmap display reveals the entire image.
Additionally, this representation closely resembles the format of the samples provided to annotators.

CBM Concerning concept bottleneck explanation, which basically can be interpreted as a dictionary attributing a scalar for
each concept. One crucial step is converting CBM activations to VLM embeddings. We tested two ways do do so:

* By considering the raw text of concepts, ordered by importance (Equation 2)

* By using a sum of all the VLM embeddings of text, weightened by its activations:

Ny

1 i
= T Z €] [k] VLMex(concept; [£]) (15)
ill %

Drext (eg )

If we use the first solution, there are questions about the number of concepts to keep, that we note as the parameters Ny,,.
Table 19 presents the influence of Ny, while 20 presents the influence of differents ways to compute the embeddings. Analysis
of the results indicates that an adequate number of concepts enhances ranking performance, which eventually plateaus, thereby
informing the selection of V;,, = 15. Regarding the embedding procedure, optimal outcomes were achieved by encoding the
top concepts as a sentence. The inclusion of a template demonstrated negligible influence on overall performance metrics.

E. PASTA-score: Additional Examples



Table 10: Raw metric values averaged for each explainer and model. Each value is the average result on 5 runs with the

standard deviation.

Saliency Method Model Faithfulness (ROAD) Robustness (Gaussian noise) Sparseness
GradCAM resnet50 0.12 £ 0.20 0.92 £+ 0.35 0.65 £ 0.11
GradCAM vitB 0.02 £0.03 1.65 £ 1.77 0.50 £0.26
AblationCAM vitB 0.02 £0.03 1.51 £1.19 0.74 £0.21
AblationCAM CLIP-zero-shot 0.02 +0.02 1.39 £ 0.70 0.79 & 0.16
EigenCAM resnet50 0.12 +0.21 0.93 + 0.47 0.79 4+ 0.07
EigenCAM vitB 0.02 4+ 0.03 1.03 +0.33 0.58 +0.06
EigenCAM CLIP-zero-shot 0.02 £0.02 0.78 £ 0.38 0.56 £ 0.09
EigenGradCAM resnet50 0.12£0.20 0.96 £ 0.57 0.78 £0.07
EigenGradCAM vitB 0.02 £0.03 240 £ 1.74 0.83 £0.19
EigenGradCAM CLIP-zero-shot 0.02 £0.03 1.26 £+ 0.61 0.72 £0.14
FullGrad resnet50 0.11 £0.19 0.48 £ 0.15 0.40 £+ 0.06
FullGrad vitB 0.02 £0.02 1.08 £0.48 0.38 = 0.06
GradCAM CLIP-zero-shot 0.02 4+ 0.02 1.21 £+ 0.66 0.57 £ 0.17
GradCAMPlusPlus resnet50 0.12 £0.20 0.71 £ 0.26 0.60 £ 0.10
GradCAMPIlusPlus vitB 0.02 +0.02 2.33 £ 2.17 0.59 +0.28
GradCAMPIlusPlus CLIP-zero-shot 0.02 + 0.02 1.46 + 0.93 0.63 +0.24
GradCAMElementWise resnet50 0.11 £ 0.20 0.72 £0.25 0.58 £0.10
GradCAMElementWise vitB 0.02 +=0.02 1.20 £ 0.40 0.59 £+ 0.09
GradCAMElementWise CLIP-zero-shot 0.02 +£0.02 0.71 = 0.28 0.38 = 0.08
HiResCAM resnet50 0.12 £ 0.20 091 £+ 0.35 0.65 £0.11
HiResCAM vitB 0.02 £0.03 1.92 £1.13 0.71 £0.24
HiResCAM CLIP-zero-shot 0.02 +0.02 1.43 +0.49 0.69 £+ 0.13
LIME resnet50 0.15 +£0.22 0.49 + 0.06 0.12 £ 0.04
ScoreCAM resnet50 0.12 £ 0.21 0.78 = 0.31 0.59 £0.10
ScoreCAM vitB 0.02 +0.03 1.22 + 0.65 0.53 +£0.18
XGradCAM resnet50 0.12 +£0.20 0.88 +0.34 0.65 £ 0.11
XGradCAM vitB 0.02 £0.03 1.37 £ 0.30 0.62 £+ 0.07
XGradCAM CLIP-zero-shot 0.02 +£0.02 1.30 £ 0.20 0.59 £+ 0.06
DeepFeatureFactorization resnet50 0.11 £0.18 0.95 £ 0.52 0.34 £0.12
DeepFeatureFactorization  vitB 0.02 £ 0.03 0.63 £0.23 0.28 £ 0.05
DeepFeatureFactorization ~ CLIP-zero-shot 0.02 £ 0.03 0.65 + 0.31 0.33 £ 0.08
LIME vitB 0.02 4+ 0.03 0.50 & 0.05 0.15 £ 0.03
BCos resnet50-bcos 0.15+0.24 0.88 = 0.31 0.50 £0.09
LIME CLIP-zero-shot 0.02 +0.03 0.58 £ 0.09 0.16 £ 0.05
SHAP resnet50 0.13 +£0.21 1.37 £ 0.46 0.50 £ 0.10
SHAP vitB 0.02 £0.03 1.05 £0.45 0.40 £ 0.09
SHAP CLIP-zero-shot 0.02 £0.03 1.19 £ 0.38 0.46 +=0.10
AblationCAM resnet50 0.12 £0.19 1.44 +£0.48 0.71 £0.11




Table 11: XAI techniques with aggregated scores across different evaluation metrics.

XAI Technique Q1 Q2 Q3 Q4 Q5 Q6
GradCAM (ResNet50) 322 322 3.67 3.66 222 465
GradCAM (ViT-B) 2.63 264 341 341 253 4.62
GradCAM (CLIP-zero-shot) 240 240 330 329 263 479
LIME (ResNet50) 2.51 249 321 320 3.78 451
LIME (ViT-B) 3,00 298 355 353 323 453
LIME (CLIP-zero-shot) 275 274 335 333 361 453
SHAP (ResNet50) 300 299 350 349 264 4.0
SHAP (ViT-B) 3.10 3.09 358 355 257 470
SHAP (CLIP-zero-shot) 3.14 3.13 355 352 264 4.68
AblationCAM (ResNet50) 271 270 346 346 3.07 4.17
AblationCAM (ViT-B) 229 228 321 321 248 4.66
AblationCAM (CLIP-zero-shot) 203 203 299 300 234 4.64
EigenCAM (ResNet50) 312 311 365 363 226 425
EigenCAM (ViT-B) 313 3.13 365 3.63 227 429
EigenCAM (CLIP-zero-shot) 327 328 381 376 198 4.11
EigenGradCAM (ResNet50) 3.09 3.09 3.61 3.60 213 432
EigenGradCAM (ViT-B) 200 2.00 290 290 298 4.69
EigenGradCAM (CLIP-zero-shot) 2773 273 345 343 2.62 458
FullGrad (ResNet50) 350 349 386 3.80 198 4.03
FullGrad (ViT-B) 228 227 316 3.16 3.13 4.64
GradCAMPIlusPlus (ResNet50) 326 326 373 3.69 220 4.38
GradCAMPIlusPlus (ViT-B) 2.58 258 333 331 3.10 4.69
GradCAMPIlusPlus (CLIP-zero-shot) 231 231 327 326 278 4.79
GradCAMElementWise (ResNet50) 323 322 3.69 3.67 219 432
GradCAMElementWise (ViT-B) 212 212 295 297 269 4.65
GradCAMElementWise (CLIP-zero-shot) 3.10 3.10 3.64 3.61 225 437
HiResCAM (ResNet50) 328 327 372 3.69 221 4.60
HiResCAM (ViT-B) 2.03 203 298 298 293 4.80
HiResCAM (CLIP-zero-shot) 238 238 321 321 273 4.80
ScoreCAM (ResNet50) 332 332 373 370 232 450
ScoreCAM (ViT-B) 3.19 318 373 3.68 244 4.66
XGradCAM (ResNet50) 326 327 371 369 210 4.63
XGradCAM (ViT-B) 2.37 237 329 328 378 4.65
XGradCAM (CLIP-zero-shot) 2.59 259 346 345 388 4.70
DeepFeatureFactorization (ResNet50) 341 341 386 382 222 418
DeepFeatureFactorization (ViT-B) 3.03 3.02 372 3.68 2.18 426
DeepFeatureFactorization (CLIP-zero-shot) 3.22 3.22 378 3.72 2.02 4.07
CLIP-QDA-sample 220 219 311 3.09 272 4.70
CLIP-Linear-sample 3.10 3.08 348 345 168 4.46
LIME_CBM (CLIP-QDA) 2.69 269 338 336 3.64 459
SHAP_CBM (CLIP-QDA) 3.09 3.08 353 352 282 454
LIME_CBM (CBM-classifier-logistic) 290 2.88 338 335 277 449
SHAP_CBM (CBM-classifier-logistic) 3.08 306 346 343 243 430
Xnesyl-Linear 236 234 322 319 245 3.83
BCos (ResNet50-BCos) 2.86 285 349 346 230 3.84
RISE-CBM (CBM-classifier-logistic) 328 327 366 362 222 435




Table 12: Average positions of axioms for question 7. Lower rankings indicate that the axiom is considered more important
by evaluators, while higher rankings suggest the axiom is considered less important. Results sorted by ascending order.

Axiom Average Position (Q7) |
Trustworthiness 2.47 +1.48
Complexity 2.53 +£1.58
Robustness 2.97 + 1.06
Expectedness 3.20 + 1.05
Objectivity 3.77 + 1.36

Table 13: Average positions of questions 1 to 6 for Q8 and Q9. For Q8, higher rankings indicate that the question is considered
more important by evaluators, while lower rankings suggest the question is considered less important. For Q9, lower rankings
indicate that the question is considered more difficult to evaluate, while lower rankings suggest the question is considered less

difficult.
Question  Average Position (0Q8) T Average Position (Q9) |
Ql 4.10 +1.32 4.00 £ 1.21
Q2 3.90 + 1.29 423+ 1.35
Q3 4.03 + 1.77 4.53 +1.70
Q4 3.13+ 141 3.67 £ 1.40
Q5 2.63 + 1.66 1.80 + 0.57
Q6 3.00 £ 1.95 2.54 +1.72

Table 14: Training and Inference Times on GPU and CPU. Results for the PASTA-score® ™" variant.

Device Training Time (s) Inference Time (s)
GPU 1048.74 36.12
CPU 10035.98 796.41

Table 15: Comparison of the influence of ground truth generation methods. Each value is the average result on 5 runs with

the standard deviation.

Label Type MSE QWK scc

Mode 0.989 +0.113 0.471 £0.055 0.501 £ 0.052
Mean 0.774 + 0.067 0.506 + 0.049 0.532 + 0.043
Median 0.924 £0.093 0.479 £0.052 0.509 + 0.046

Table 16: Impact of Adding Labels to the Encodings. Each value is the average result on 5 runs with the standard deviation.

Computation

MSE

OWK

SCcC

Embeddings

Embeddings + Labels

0.987 +0.098 0.469 +0.047 0.497 £ 0.045

0989 £0.113 0.471 £0.055 0.501 £ 0.052

Table 17: Impact of the Scoring Function. Each value is the average result on 5 runs with the standard deviation.

Scoring Function MSE OWK SccC

PASTA 0.989 £0.113  0.471 £ 0.055 0.501 + 0.052
SVM 0.965 £+ 0.077 0.463 £ 0.056 0.501 £ 0.051
Ridge 1.169 £0.143  0.423 £0.046 0.444 £ 0.043
Lasso 0.998 £0.075 0.395 £ 0.048 0.454 £+ 0.052




Table 18: Influence of the saliency computation process. Heatmap refers to the process defined in Equation 1 and Masked
image refers to the process defined in Equation 14. Each value is the average result on 5 runs with the standard deviation.

Embedded Image MSE OWK SCcC
Heatmap 0.989 + 0.113  0.471 £ 0.055 0.501 + 0.052
Blur 0.992 +£0.089 0.470 £ 0.048 0.498 £ 0.043

Table 19: Influence of the number of words selected as an input text V;,. Each value is the average result on 5 runs with
the standard deviation.

Niop MSE OWK scc

5 0.988 +0.101  0.466 £ 0.047 0.495 £ 0.043
10 0992 +0.115 0.461 £0.066 0.493 £+ 0.057
15 0989 +0.113 0.471 £ 0.055 0.501 + 0.052
20 0994 £0.122 0.470 £0.059 0.498 £+ 0.056

Table 20: Influence of the CBM explanation embedding process. Weightened refers to the process described in Equation 15,
Sentence refers to the process described in Equation 2, preceded with the template noted in Template. Each value is the average
result on 5 runs with the standard deviation.

Computation MSE OWK scc Template
Weighted 1.212 £ 0.288 0.392 £ 0.077 0.425 + 0.082 “r

Sentence 0.989 +0.113  0.471 = 0.055 0.501 £ 0.052 «©r

Sentence 0.986 + 0.119 0.469 +0.061 0.504 + 0.055 “Concepts in explanation:”

Table 21: PASTA scores corresponding to different explanations. Dataset: catsdogscars. Label: dog

- T — ?

P QD) 2.01 2.04 3.94 3.01 3.81 3.97 2.14
P (Q2) 1.90 1.82 3.31 2.80 3.57 3.37 1.70
P (Q3) 2.93 2.58 3.65 4.06 4.02 3.65 2.83
P (Q4) 3.04 2.95 3.84 4.09 4.14 3.84 2.75

Table 22: PASTA scores corresponding to different explanations. Dataset: MonumAlI. Label: Baroque

Py
% - -
. [ ]
P QD) 2.45 1.01 3.06 4.00 1.00 1.67 3.22
P (Q2) 2.51 1.26 2.99 3.48 1.57 1.52 3.51
P (Q3) 3.67 1.52 3.51 3.71 2.05 1.54 3.69

P (Q4) 335 1.33 3.45 3.89 1.33 1.59 3.79




Table 23: PASTA scores corresponding to different explanations. Dataset: COCO. Label: transportation

P QD)
P (Q2)
P (Q3)
P(Q4)

P(QI)
P(Q2)
P(Q3)
P (Q4)

2.53
2.88
3.06

391
3.78
3.78

2.55
3.22
3.27

3.90
3.94
3.82

2.60
3.30
3.26

342
3.80
3.82

Table 25: PASTA scores corresponding to different explanations. Dataset: PascalPart. Label: person

- | 1
P (QI) 3.68 3.12 1.35 371 1.93
P(Q2) 3.46 3.07 1.74 3.16 1.81
P (Q3) 3.50 3.02 1.77 3.59 2.56
P (Q4) 423 3.82 1.29 4.04 1.91

Table 26: PASTA scores corresponding to different explanations. Dataset: COCO. Label: cultural

P QD)
P (Q2)
P (Q3)
P(Q4)

2.65
2.21
2.40
2.49

2.75
2.14
249
2.75

1.45
1.83
1.72
1.92




Table 27: PASTA scores corresponding to different explanations. Dataset: catsdogscars. Label: car

P (Q1) 3.20 2.67 4.80 2.10 2.74 4.80 1.50
P (Q2) 3.18 2.60 4.69 1.53 2.37 4.69 1.64
P (Q3) 2.98 2.54 4.30 2.55 3.17 4.30 2.16
P (Q4) 3.34 247 4.06 2.51 3.01 4.06 1.72

Table 28: PASTA scores corresponding to different explanations. Dataset: PascalPart. Label: motorbike

| . :

T = ”
P (Q1) 1.26 1.42 3.38 2.43 1.10 1.00 3.26
P (Q2) 1.59 1.61 3.35 2.22 1.46 1.52 3.07
P (Q3) 2.18 1.43 441 3.31 1.96 1.77 4.18
P (Q4) 2.15 2.10 422 3.47 1.45 2.24 4.08

Table 29: PASTA scores corresponding to different explanations. Dataset: MonumAI. Label: Gothic

P (Ql) 274 375 3.38 2.88
P (Q2) 2.51 3.43 3.13 2.79
P (Q3) 321 3.90 3.58 3.70
P (Q4) 3.18 3.85 3.51 3.52




