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Figure 1:Marcelle is a toolkit for interactivemachine learning addressing the composition of customworkflows. It implements

a component-based architecture using reactive programming for pipeline specification. Components provide views that can

be composed to form custom interfaces. Marcelle’s architecture facilitates collaboration between machine learning experts,

designers and end-users.

ABSTRACT

Human-centered approaches to machine learning have established
theoretical foundations, design principles and interaction tech-
niques to facilitate end-user interaction with machine learning
systems. Yet, general-purpose toolkits supporting the design of
interactive machine learning systems are still missing, despite their
potential to foster reuse, appropriation and collaboration between
different stakeholders including developers, machine learning ex-
perts, designers and end users. In this paper, we present an ar-
chitectural model for toolkits dedicated to the design of human
interactions with machine learning. The architecture is built upon a
modular collection of interactive components that can be composed
to build interactive machine learning workflows, using reactive
pipelines and composable user interfaces. We introduce Marcelle, a
toolkit for the design of human interactions with machine learning
that implements this model. We illustrate Marcelle with two im-
plemented case studies: (1) a HCI researcher conducts user studies
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to understand novice interaction with machine learning, and (2) a
machine learning expert and a clinician collaborate to develop a
skin cancer diagnosis system. Finally, we discuss our experience
with the toolkit, along with its limitation and perspectives.
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1 INTRODUCTION

Machine Learning (ML) system development is still a matter for
specialists. App designers struggle to include ML in their design
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practice. Domain experts, such as clinicians, have little control
over the development of the systems providing them assistance in
decision making. Small businesses developing ML solutions may
find it difficult to provide their clients with adaptable tools for
calibrating and evaluating models on real-world data. With the
growing use of machine-learned models in user-facing applications,
it is essential to include a broad spectrum of stakeholders in the
process of building and assessing such systems.

Interactive Machine Learning (IML) is a paradigm engaging peo-
ple in a tight interaction loop with a learning algorithm [17, 32,
33, 40]. In this approach, users refine a model through an iterative
process involving several activities, from data acquisition to model
training, testing and deployment [32]. Some of the benefits of IML
include helping users to efficiently convey expert knowledge to
the system [43], allowing system adaptation to a user’s specific
needs [35], enabling ML as design material [31], or helping users
to better understand caveats and strengths of a ML pipeline [42].
IML research is burgeoning: it has given rise to novel interaction
techniques, original visualisation strategies, as well as important
guidelines for designing IML systems and Human-AI Interactions
(HAI) [19, 28, 51, 64, 68]. Systems and studies explicitly adopting a
human-centered perspective on ML illustrate the need to support
diverse workflows in ML practice. Yet, IML software is often spe-
cialized for particular domains [9, 23, 35] or tasks [4, 27, 33, 36] and
cannot readily be adapted to different practices. To our knowledge,
IML is still missing general-purpose toolkits supporting the design
of such systems, that would foster reuse and appropriation as well
as collaboration between different stakeholders.

In this paper, we propose a software architecture for toolkits
dedicated to the design of human interactions with ML systems.
Our goal is to facilitate the development of such interactions for a
broad range of users such as designers, domain experts, creatives,
or ML researchers. In the proposed architecture, developers can
compose interactive machine learning workflows by assembling
components. Components provide graphical user interfaces that
can be easily composed into custom layouts, and their reactive
data streams can be composed into reactive pipelines that link
user interactions with machine learning processes. This approach
emphasizes flexibility in the definition of workflows, enabling rapid
prototyping of pipelines and interfaces that can be tailored for a
large diversity of end users.

Our contribution in this paper is twofold. First, we present an
architectural model for composing interactions with ML systems.
Second, we present an implementation of the model in the form of
a programming toolkit, called Marcelle. Marcelle provides a high-
level JavaScript API allowing developers to quickly prototype and
distribute interactive applications. We illustrate Marcelle with two
implemented case studies: (1) a HCI researcher conducts user stud-
ies to understand how novices interact with ML, and (2) a ML
expert and a clinician collaborate to develop a skin cancer diagnosis
system.

2 COMPOSING INTERACTIONS WITH ML
Our vision of composable human-ML interactions relies on toolk-
its that are flexible, integrable in existing practices and supporting
collaboration. Flexibility means that developers should be able to

easily customize how they interact with elements of a ML pipeline
(datasets, models, metrics, etc.) during development, and how end-
users may interact with these elements. The need for flexibility
concerns both workflows, that structure activities and their re-
lationships, and specific interaction techniques, where a careful
design of interfaces is essential to provide appropriate feedback and
interaction mechanisms. Such tools should be seamlessly integrated
in the existing practices of developers and end-users. Typically,
tools should be easily shared and integrated in diverse practices,
from ML experts developing models in Python using dedicated
ML libraries to domain experts with context-specific constraints
(e.g. using the system in a medical environment). The development
process should support collaboration between several stakeholders,
for example different developers, designers and end-users.

We propose an architectural model to achieve this objective for
the design of human interactions with machine learning. The archi-
tecture is built upon a modular collection of interactive machine
learning components with a unified interface, that can be com-
posed to form custom processing pipelines and user interfaces. This
component-based architecture is extensible and facilitates reuse
of interaction techniques across projects. The architecture is built
over web technologies to facilitate collaboration, and supports
sharing of applications, data and models.

To motivate this approach, we describe two case studies. The
first case study originates in our own research experience [56].
The second case study stems from recent findings on human-ML
collaboration in the medical field [63]. The scenarios of the two
case studies are depicted in Figures 2 and 3, respectively.

Studying Human Interaction with Mac
associate professor. Her research focus

hine Learning.
Suzanne is an es on democ-
ratizing ML systems for the general public. To that end, she runs
workshops and studies with playful scenarios where participants
can teach concepts to a classifier and she collects data on user in-
teractions. One of these scenarios involves input sketches drawn
by people. Due to the sanitary restrictions, she needs to run her
study remotely, while collecting data from participants.

She starts by prototyping a simple sketch-based classification
workflow using a single JavaScript script. She instantiates a few
standard components of themachine learning process: a dataset with
a recording interface, a classifier, and a visualization module for
its predictions. She reuses a sketchpad component from a previous
project, and extends her toolkit by creating a component to visual-
ize the model’s uncertainty in order to help people to understand
how well the classifier is trained. She composes these components
together to form a processing pipeline, and assembles them in a
graphical user interface. She shares her application as a simple web
page in an online workshop with novices. Their feedback leads her
to quickly update her script so that the pipeline and visual layout
provides instantaneous feedback after each stroke and supports
incremental learning. Her prototype now ready for the study, she
sets up a data store to record the participants’ sketches and models,
along with logs of the interactions with the system.

Her experiments show that her design is successful in supporting
ML understanding by novices. Later on, she starts collaborating
with Shan, a designer, to deploy a version of the application in a
science popularization exhibition. Shan proposes and implements

Scenario 1
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a new visual interface using a web framework, which he later links
with Suzanne’s machine learning pipeline by removing the default
app interface from her script, without affecting its functioning.

HCI researcher

Remote study participants

Development of the 
IML study interface 

and pipeline

Exhibition visitors

Designer

Design of a 
custom 
interface

Own model and data Own model and data

Suzanne Shan

Figure 2: Summary of the first scenario. The interfacesmade

in this scenario are dedicated to both remote study partici-

pants and exhibition visitors. The HCI researcher Suzanne

developed the interface for remote study participants and

the ML pipeline (dashed purple arrow). The designer devel-

oped the interface for exhibition visitors and reuses the ML

pipeline made by Suzanne. Each application has their own

data and models (green arrows).

Scenario 2 Collaborating with domain experts. Louise is a newly
recruited ML engineer working on state-of-art image classification
models for skin cancer diagnosis. She collaborates with Michel, a
clinician, to assess the real-world performance of the developed
methods. Louise uses her usual Python scripts and logs data through
a dedicated logger compatible with the interface she wants to build.
On the interface, she composes a few standard components in a
dashboard to visualize training (e.g. loss curves) and model pre-
dictions (e.g. intermediate confusion matrices, direct testing with
hand-picked instances). To share her progress, she creates a simpler
dashboard for Michel, that reuses the prediction pipeline without
details about the training. It allows Michel to test the quality of the
classification with his own images. The application runs in a web
browser, and synchronizes Louise’s model updates with Michel’s
interface. It also enables Michel to correct misclassifications and
to store them in order to provide Louise with additional data and
annotations.

3 RELATEDWORK

In this section we outline background work in IML, and we ana-
lyze existing systems and toolkits for ML and IML according to
our design considerations highlighted in the scenarios of two case
studies.

ML engineer Domain expert

Model training 
and selection

Model review and 
data provision 

Shared model and data

Louise Michel

Figure 3: Summary of the second scenario. The two inter-

faces are dedicated to ML engineer Louise and the clinician

Michel. Louise developed the ML pipeline and both inter-

faces (dashed purple arrows). Both dashboards share the

same model and data (green arrows) to enable collaboration

between Louise and Michel.

3.1 Background work in Interactive Machine
Learning

Research in Interactive Machine Learning has highlighted the ben-
efit of bringing human input in the training process of machine
learning systems, leading to the development of original iterative
workflows and interaction techniques [17, 32].

IML workflows differ from conventional machine learning work-
flows in involving shorter cycles of data edition, training and eval-
uation. Such workflows have been shown to produce more robust
models in diverse tasks such as image segmentation [33], web im-
age search [36], or text classification debugging [47]. Aside from
improving model performance, IML workflows foster exploration
and discovery, which makes it attractive for creative and artistic
practices where the learning process may become more important
than the learned model itself [57]. Such an approach has been used
in digital musical instrument design [26, 34, 35, 37] and movement-
based interaction design [39].

IML research also gave rise to original interaction techniques.
Iterative and exploratory workflows make user’s action history [42]
and model’s state tracking [18] particularly important in ML de-
velopment. Building ensemble models interactively is faster and as
robust as using optimization [62]. Other works have investigated
how interpretable feedback on predictions can help users under-
stand and steer a model towards better performance [47, 61]. We
refer to Dudley and Kristensson [32] for a comprehensive survey
of interface design in IML.

Finally, previous works proposed guidelines to build better IML
systems, where quality can be assessed in terms of model perfor-
mance, user’s understanding of the system, or user experience [16].
Dudley and Kristensson [32] identified 6 activities that have to
be taken into account within an IML workflow from a behavioral
perspective: (1) feature selection, (2) model selection, (3) model
steering, (4) quality assessment, (5) termination assessment and (6)
transfer. While this list of activities covers the scope of a compre-
hensive IML workflow, many approaches address a single activity
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(or a subset of activities), and specific systems are developed in this
objective. In the next section, we review a number of IML systems
and tools that are publicly available.

3.2 Interactive Machine Learning Tools
Several tools following the IML paradigm have been proposed to as-
sist in model development by non-experts. Teachable Machine [27]
and Lobe [4] are standalone applications offering a simple inter-
face to create machine learning classifiers from examples. They
require neither programming nor ML knowledge, and can be used
as educational ressources [20]. They are mostly dedicated to devel-
opers willing to integrate image classification in application. While
they facilitate model development, assessment and transfer, they
implement a fixed workflow and cannot be customized.

More modular IML tools have been proposed to support cre-
ative practices. RunwayML [9] presents itself as a Photoshop-like
tool that integrates many state of the art deep learning models. To
that extent, RunwayML is less of a toolkit than a complete soft-
ware tool for ML-assisted creative practices. Wekinator [35] is a
standalone application dedicated to the design of new instruments
and gesture-based interaction for music performance. It integrates
general-purpose models that can be used with a wide variety of in-
puts and outputs. However, 333it provides limited visualization and
fixed workflows. There exist libraries integrating ML algorithms
into computer music programming platforms such as Cycling’74
Max [13], including either general-purpose models as in ml.lib [25]
or specialized techniques as in XMM [38]. Finally, InteractML [30]
is a visual programming extension for Unity3D dedicated to game
developers and designers willing to explore embodied interactions.
Its modular architecture facilitates the creation of custom work-
flows for end-users. Finally, the RapidMix API [24] is a JS library
for rapid prototyping of creative applications embedding machine
learning methods. The API allows for creating custom ML pipelines
in the browser but it does not allow for composing user interfaces.

Even though there are many examples of tools with diverse
workflows integrating specific interaction techniques, to the best
of our knowledge no general-purpose toolkit exists for building
standalone IML applications. Developers must dedicate significant
resource to developing systems using machine learning frameworks
and visualization tools.

3.3 Machine Learning Frameworks
A multitude of modular frameworks has emerged in the machine
learning community to makeMLmore accessible for developers and
data scientists. Available as libraries, these tools provide a high-level
API for training and evaluating ML models, either with general-
purpose algorithms as in Scikit-Learn [54], or specialized for deep
learning, for instance with Tensorflow [14] or Pytorch [53]. These
libraries still require ML expertise in addition to programming
knowledge, and focus on creating training and evaluation pipelines
with limited interactivity.

There has been a recent effort to bring ML to web browsers
through JavaScript libraries. ONNX.js [49] is a JavaScript library
for running inference on Open Neural Network Exchange (ONNX)
models in web browsers. The Tensorflow.js [60] library enables
inference and training of neural networks in web browsers. Its API

is close to Keras [3], and it provides compatibility with models
trained with Python. Other libraries such as ml.js [6] and ml5 [5]
were designed to provide a high-level API for developers and de-
signers. While these tools can power the development of interactive
machine learning systems, they do not explicitly support the design
of interactions with ML pipelines.

Finally, there also exist toolkits for data science emphasizing the
creation of custom workflows for data analysis tasks. Orange [29]
and RapidMiner [41] provide a visual programming environment
that allows users to create data analysis pipelines. However, their
focus is on data analysis rather model refinement, and they are not
designed to enable custom end-user interaction.

3.4 Visualization Toolkits for Machine
Learning

With the rising interest for visual analytics as a support for ML
practice [70], a number of visualization toolkits have been proposed
to support model development, debugging and understanding. Ex-
amples include Tensorboard [67], ClearML [15], Neptune.ai [8],
VisualDL [11] or Visdom [2]. Tensorboard [67] is a visualization
toolkit for Tensorflow, running in the browser, dedicated to facili-
tate machine learning experimentation. Its modular architecture
provides flexibility regarding the information to display, that in-
cludes metrics, model graphs and assets. Notebook environments
such as Jupyter [46] provide literate programming environments
emphasizing narratives. Notebooks support a wide range of vi-
sualization libraries, are easily shared, and therefore foster reuse
and appropriation. Tensorwatch [58] emphasizes real-time mon-
itoring in Python notebooks. It allows users to query about the
training process and produce real-time visualisation. While these
tools bring interactivity to the workflows of ML practitioners, they
are dedicated to ML monitoring and assessment. Their focus is on
computation, whereas our approach emphasizes direct interaction
for a larger range of activities. Moreover, they do not allow the
development of standalone applications.

Summary. While there exist toolkits for machine learning and vi-
sualization, interactive machine learning systems are often domain-
specific. To our knowledge, general-purpose toolkits for designing
IML applications are still missing, along with defining principles
for their architecture.

4 DESIGN PRINCIPLES
We present 5 design principles that define an architecture model
enabling composing interactions with ML pipelines, as described in
Section 2. The proposed architecture is illustrated in Figure 4. The
implementation in Marcelle presented in Section 5 follows these
principles.

4.1 Component-based Architecture
Building interactive ML application requires assembling interac-
tions to facilitate the manipulation of machine learning concepts
and objects. These objects of interest are highly heterogeneous in
nature and relate to various activities, such as the ones reported
by Dudley and Kristensson [32]: feature selection, model selection,
model steering, quality assessment, termination assessment and
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Figure 4: The proposed architectural model relies on loosely coupled components (dark blue boxes) embedding data, pro-

cessing and interaction. Components expose event streams that serve as interface to build reactive pipelines (green arrows).

Stream processing can be performed outside components (outlined boxes). Components optionally provide views that can

be displayed on demand (right panel), offering users ways to interact with machine learning pipelines. These views can be

visually composed through layout mechanisms (right panel). Data stores offer persistent storage to components and enable

bidirectional communication with Python.

transfer (i.e. deployment). Depending on the activity, users might
need to operate upon various objects: data, algorithms, parameters,
models, predictions, explanations, etc. In addition, as the needs
of users can be dramatically different, their actions upon the ML
pipeline need to be supported by a custom arrangement of inter-
faces that facilitate the manipulation of these objects.

We propose a modular architecture where the building blocks
for designing interactions are components embedding data, compu-
tation, and interaction. Components enable granular interaction
with specific elements of the ML pipeline,1 and can be flexibly
composed to form higher-level interactions and workflows that
support the aforementioned activities. Components can typically
be data sources (e.g. capturing images from a webcam, uploading
files, recording user sketches), data structures (e.g. a dataset used to
store training examples), visualizations (e.g. to navigate through a
dataset or to visualize predictions), computations (e.g. model train-
ing or prediction), or a combination. To emphasize instant feedback
and interaction, most components should provide a graphical user
interface that can be displayed on demand. Components should
implement a unified interface (in the sense of interface-based pro-
gramming) defining how they can be connected and visualized,
without enforcing particular patterns or libraries to program their
internal behavior.

4.2 Interaction-Driven Pipelines

While in a typical ML setup the workflow for training and testing
might be standardized, interactive machine learning applications
involve custom workflows where various types of processing are

1In our context, granularity means the different level at which the user can interact
with the system: from high level class names in a classification task, to the low-level
number of neurons in a specific layer of the network for example.

triggered by user interactions [18, 35, 42, 57, 62]. It is therefore es-
sential to let developers create custom pipelines specifying complex
relationships between the user’s actions (e.g. capturing a new in-
stance) and the resulting processing (e.g. adding it to a dataset,
training a model, updating predictions, etc.). Reactivity is key to
handle diverse workflows where event streams of heterogeneous
nature must be interconnected.

We propose a design where developers can flexibly specify the
relationships between components to form reactive pipelines that
propagate change. Components share a common minimal inter-
face that enables them to expose arbitrary event streams to fa-
cilitate communication. Event streams can be observed, filtered,
transformed or combined anywhere inside or outside components.
Components can therefore observe streams and react to change
in other components, they can process streams or create them. Al-
tering streams outside components provides a powerful means for
customizing the processing chain within ML pipelines.

4.3 Composable Interfaces

Workflows encompass two main facets: the specification of reactive
pipelines describing the relationships between various objects and
actions, as described in the previous section, and the visual arrange-
ment of components in the end-user interface. In their review of
user interface design for IML, Dudley and Kristensson [32] under-
line that while there exist common elements, the design of IML
interfaces vary considerably according to the data and application.
The proposed component specification includes an optional view
allowing for visualization and enabling user interactions. However,
the way views are used in an application (e.g. where and when they
are displayed) should not affect the logical relationships between
components, that are defined using reactive pipelines.
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We propose that components should be displayed on demand. In
practice, this means that components’ computation should not be
affected when their view is hidden (besides preventing from user
interactions), and that multiple views could potentially be used
to interact with the same component. Components should easily
be displayed on their own in web applications, and higher-level
composition mechanisms for generating layouts should be provided
to further facilitate development.

4.4 Data Persistence and Communication
In a collaborative scenario involving users with diverse levels of
expertise in ML, it is essential that the objects of various types con-
tained in the application are shared among collaborators (datasets,
annotations, models, predictions, logs, etc.). We propose a design
that supports flexible data persistence and sharing, allowing devel-
opers to specify where to store and how to share various parts of
an application’s state, including training or test data, models, logs,
etc. We propose the use of data stores, accessible to components,
that are generic enough to store heterogeneous data describing the
application’s state. Data stores should provide a unified interface
while allowing data storage in diverse locations, including remote
servers and browsers’ web storage.

4.5 Interoperability with ML Libraries
Machine learning practice now relies on a key set of programming
languages and libraries that are widely used among researchers
and engineers, as reported in Section 3.3. Among them, Python is
particularly popular, with libraries such as Scikit-Learn [54], Ten-
sorflow [14] or Pytorch [53], to name a few. The architecture needs
to provide interoperability with machine learning frameworks in
order to be used by machine learning experts. It is essential to
provide an interface to communicate data and models between
Python programs and components. For instance, enabling access to
data stores from third-party programs would help creating bridges
between programming environments. We suggest that architec-
tures supporting interoperability should seamlessly share data and
models, but also computational pipelines, including, for instance,
feature extraction and preprocessing.

5 IMPLEMENTATION
Marcelle is an IML toolkit that implements the design principles de-
fined in the previous section. Marcelle is distributed as open-source
software and available online.2 The toolkit, written in TypeScript,
is distributed as a client-side JavaScript library that can be inte-
grated in web applications or used in standalone. The core library
(marcellejs/core) is composed of a set of definitions specifying
a concrete implementation of the architecture model. It also pro-
vides a set of standard components, a flexible data store system,
and two mechanisms for interface composition. Marcelle also pro-
vides a server package for persistent data storage, a command-line
interface for project generation, and a Python package allowing
communication with Tensorflow. The overall principle of the li-
brary is illustrated in Figure 1 and its architecture is depicted in
Figure 4.

2https://marcelle.dev/

5.1 IML Components
Components are the building blocks of Marcelle applications. They
embed the state, logic and interaction for particular tasks. They
implement a minimal interface enabling visualization and com-
munication with other components. A component is essentially a
JavaScript object that (1) exposes a set of reactive streams that can
be processed by other components (as described in Section 5.2), and
(2) provides methods to display the component’s graphical user
interface in the DOM.

Components are versatile in scope and can address a large variety
of tasks such as capturing images from a webcam, defining a new
dataset, instancing a Deep Neural Network (DNN) or displaying a
confusionmatrix, to name a few.We classified standard components
into 5 categories:

Input components address data acquisition from different
sources. For images, this includes recording images from
a webcam, from file upload, or from a drawing canvas.

Data management components concern data storage, pro-
cessing and visualization. This includes datasets for storing
training or test instances, predictions, or arbitrary logged
data.

Models are special components implementing specific ma-
chine learning models. They implement a specialized in-
terface for training, inference and import/export to files and
data stores. Marcelle currently integrates models from the
Tensorflow.js [60] library, but other JavaScript libraries can
easily be used.

Visualization tools concern interactive visualization of vari-
ous objects in the pipeline, such as datasets, model parame-
ters, training progress, or predictions.

Widgets are standard GUI widgets (buttons, menus, input
fields, etc.) that are necessary to compose custom user inter-
faces.

Components often provide a graphical user interface, or view,
that can be displayed on demand in a web application, using
.mount() and .destroy() methods. Examples of views of compo-
nents are included in the dashboards presented in Figure 1. Views
only communicate with the component using streams: they are
reactive to changes but can also push events into the component’s
streams. This mechanism provides a clear separation between the
view and the component’s processing. In other words, a compo-
nent remains functional in a given pipeline even if its view is not
displayed, since it is possible to imperatively put events into any
component’s streams.

We use Svelte [10] to power the views in Marcelle’s component
library. Svelte is a compile-time framework with native support for
reactive streams. However, Marcelle does not enforce the use of
any framework for creating views of custom components. Creating
custom components only requires creating JavaScript objects that
expose streams and provide a .mount() method to display the
view. A developers is free to use Svelte or any other framework to
generate views and can use any pattern for generating components,
including object literals, factory functions or classes.
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5.2 Reactive Pipelines
Reactive pipelines are concerned with the specification of the re-
lationships between user actions and machine learning objects.
We propose a distributed model that gives developers explicit con-
trol over the information flow, offering flexibility for building ap-
plications where user actions must trigger complex sequences of
operations. Our approach relies on reactive programming [21], a
paradigm that is well-suited for the development of IML applica-
tions, that are essentially event-driven. It facilitates the creation,
filtering, transformation and consumption of asynchronous data
streams that propagate changes over the pipeline. Reactive pro-
gramming enables encapsulated, loosely coupled modules where
event streams act as an interface. By avoiding callbacks, it provides
more readable and maintainable code.

Components achieve a large variety of tasks, and, from a re-
active programming perspective, can broadly be classified into 3
categories:

Sources are components producing data. Examples of source
components include GUI widgets and data input tools.

Sinks are components that respond to event streams without
necessarily producing new events, and are mostly used to
provide users with feedback.

Processors are both sinks and sources: they rely on input
events to produce a set of output streams. This is the broad-
est category of components and includes feature extractors,
models, or datasets.

Our implementation of reactive streams relies on Most.js [7],
a high performance reactive programming library. Components
expose streams as properties whose name is prefixed with a dollar
sign by convention. For instance, a webcam component exposes
several streams, including a boolean stream called $active spec-
ifying whether the webcam is turned on, and a periodic stream
called $images containing images sampled from the webcam in
ImageData format.

5.3 Dashboard and Wizard Layouts
Since components provide their own views, creating user interfaces
that are tailored for a particular application or user is straightfor-
ward. Developers can mount any component to a given element
in the DOM. To simplify interface design, Marcelle provides two
high-level mechanisms for building user interfaces: Dashboards and
Wizards.

5.3.1 Dashboards. Dashboards provide a way to create applica-
tions with multiple pages that display collections of components.
Dashboards provide an interface similar to Tensorboard [67]. Dash-
boards are instantiated using the dashboard factory function. They
are composed of pages, instantiated with the .page()method, that
can display any component instance passed to their .use()method.
Dashboards are hidden by default and can be displayed on demand
as a full-screen overlay over the current web page. In order to avoid
disturbing the host application when displayed on demand, we
use hash-based routing for navigating between the various pages.
Navigating to a page will mount its associated components’ views.
Dashboards also expose streams containing events describing their

state: $visible specifies whether the dashboard is currently visible,
and $page is mapped to the current page.

5.3.2 Wizards. Wizards are dedicated to the creation of walk-
through guides for beginners or end-users. Wizards are inspired
by Teachable machine’s 3training wizard that walks users through
training their machine learning model. Marcelle wizards are flex-
ible and allow developers to specify what components should be
displayed at every step. Our implementation of wizards is similar to
that of dashboards: they are instantiated with a factory function and
contain a number of panels. Panels are created using the .page()
method, and contain a title, a textual description and a set of compo-
nents to display. Wizards are also displayed on demand in a modal
window. They expose a stream called $current synchronized with
the index of the current panel.

5.4 Data Stores
While reactive programming facilitates real-time data communi-
cation, most scenarios also require data persistence so that parts
of the application’s state are stored. For instance, the training data
provided by the user should persist, even when changes to the
pipeline are made. Marcelle provides flexible data stores that can
be instantiated with various backends: data can be stored in the
browser’s local storage or on a remote server. Choosing the backend
location only requires passing a URL to the data store. Developers
can create different backends to customize where different objects
are stored. Some components rely on a data store — for instance, the
dataset component that needs to store instances, — however data
collections can be created on the fly to store custom information
when relevant. This is particularly useful to store some of the state
of the application (for instance the model’s parameters) or session
logs of the user’s interactions.

Marcelle’s backend package (marcellejs/backend) provides a
simple Node.js server that can be easily configured to use either
NeDb or MongoDb databases for storage, with optional authentica-
tion. We use the Feathers [1] framework for managing data stores,
both on the server and client-side. In development mode, Feath-
ers services are created dynamically when required by the client.
They do not require the specification of a database schema, and can
therefore flexibly handle custom data structures. Feathers provides
real-time updates, enabling components to react to changes in data
stores, even if they come from other clients.

5.5 Python Integration
Training and running inference on ML models in web
browsers is possible with dedicated JavaScript libraries. Us-
ing Tensorflow.js [60], it is possible to make real-time predictions
with potentially large models with several million parameters.
Marcelle’s dataset architecture is optimized for training, using
asynchronous iterators that can stream and process data lazily.
Yet, the limited computing power of current web browsers harms
scaling to larger datasets and models.

3Online demo: https://glitch.com/~tm-wizard
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Marcelle partially supports interoperability with standard ma-
chine learning frameworks in Python. This gives Marcelle the ca-
pacity to scale easily according to the developer’s computing re-
sources. The marcelle Python package can be used to interact with
a backend server, with read and write access to data stores. Our
implementation currently supports Tensorflow, a common Python
library for Deep Learning development. Complex neural network
models can therefore be trained with large datasets from Python.
Data can be logged to the backend during training, along with
model checkpoints stored in Tensorflow.js format, and additional
generic assets such as images or audio files (according to the type
of data involved in modeling). For Keras, we provide a callback
object that can simply be passed to a model’s .fit() method. For
custom training loops in Tensorflow, we provide a Writer where
logging can be done imperatively. Marcelle components can then
easily access the logged data in the data store, for instance to plot
loss and accuracy curves, or to load models at various checkpoints
to perform inference in an interactive application.

5.6 Command-Line Interface

Marcelle comes with a Command-Line Interface (CLI) to generate
new projects, custom components and backends.We use Vite [12] as
a default build tool for projects. Vite is easily configurable, supports
multi-page applications and provides a very fast development server
with hot module reloading, which is convenient for prototyping.
Additionally, the CLI can generate new components and backend
services for existing projects.

6 CASE STUDY 1

This section describes how Marcelle can be used to implement
Scenario 1, introduced in Section 2, and discusses the benefits of
the architecture to support this task. A running demo of the case
study is available online4.

6.1 Implementing the Scenario

6.1.1 Setting up the Application Structure and Interface. Suzanne
creates her application using Marcelle’s CLI. Then she edits the
src/index.js file and instantiates the necessary components from
the marcellejs/core library: a sketchPad input, a mobileNet
component to process input sketch images5, a dataStore specify-
ing where to keep the data, a dataset, a mlpClassifier (multi-
layer perceptron classifier). These components are not intercon-
nected yet and widgets are missing to enable the necessary user
interactions. Suzanne needs a text input widget to enter the class
labels and a button to add a sketch to the training set. She instanti-
ates two new components: a textField and a button. Then, she
adds a second button to trigger model training. Finally, she adds a
third button to trigger current instance prediction.

To build her app’s interface, Suzanne instantiates a dashboard.
Using the .use() method, she adds the desired elements on the
interface: the sketchpad, the text field, the two buttons. She also
adds a datasetBrowser component to monitor the examples added

4https://uist2021demos.marcelle.dev
5This follows a common transfer learning strategy (for more details on this approach,
see for instance [69]). Mobilenet is commonly used model for pre-training [44].

to the training set. The resulting application is generated by a script
containing about 20 lines of code, as reported in Listing 1.

// Main components
const input = sketchPad();
const featureExtractor = mobileNet();
const store = dataStore('localStorage');
const trainingSet = dataset('TrainingSet', store);
const classifier = mlpClassifier({ layers: [64, 32], epochs: 20 });

// Additional widgets and visualizations
const classLabel = textField();
const captureButton = button({ text: 'Capture this drawing' });
const trainButton = button({ text: 'Train the classifier' });
const predictButton = button({ text: 'Predict label' });
const trainingSetBrowser = datasetBrowser(trainingSet);

// Dashboard definition
const myDashboard = dashboard({ title: 'Sketch App', author: 'Suzanne' });

myDashboard
  .page('Main')
  .sidebar(input)
  .use([classLabel, captureButton], trainingSetBrowser)
  .use(trainButton, predictButton);

myDashboard.start();

Listing 1: Script containing component definitions and inter-

face composition for the interactive sketch recognition ap-

plication. Components are instantiated using factory func-

tions, and can be composed into a dashboard.

Figure 5: Visual interface of the initial prototype for Case

Study 1. This dashboard is generated by Listing 1.

6.1.2 Connecting the Pipeline. Having the structure of her applica-
tion, Suzanne creates the pipeline using the components’ reactive
streams. As an example, we report a simple prediction pipeline in
Listing 2a. Here, Suzanne wants to plot the classifier predictions as a
bar chart. She uses a classificationPlot component that takes a
prediction stream as input. Using reactive programming operators,
Suzanne creates a stream of predictions from the input sketches.
She starts by sampling the $images stream of the sketchpad with
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the button $click stream, and passes the images to the feature ex-
tractor. The resulting $features stream is then fed to the classifier
to create a stream of predictions that can be visualized. The initial
prototype for the sketch application is shown in Figure 5.

const $features = predictButton.$click
  .sample(input.$images)
  .map((imgData) => featureExtractor.process(imgData))
  .awaitPromises();

const $predictions = $features
  .map((features) => classifier.predict(features))
  .awaitPromises();

const predictionViz = confidencePlot($predictions);

(a) Initial workflow: predictions are only computed when the user

requires them.

const $features = input.$images
  .map((imgData) => featureExtractor.process(imgData))
  .awaitPromises();

const $trainingSuccess = classifier.$training
  .filter((x) => x.status === 'success');

const $predictions = $features
  .merge($trainingSuccess.sample($features))
  .map((features) => classifier.predict(features))
  .awaitPromises();

const predictionViz = confidencePlot($predictions);

$predictions.subscribe(({ label }) => {
  classLabel.$text.set(label);
});

(b) Improved workflow: predictions are computed at every stroke

and when the model is updated.

Listing 2: Programming pipelines with reactive streams. In

this example, a stream of predictions is built by passing in-

put images to a feature extractor and a classifier.

6.1.3 Improved Workflow. After sharing her application as a web
page and gathering preliminary feedback about the system, Suzanne
chooses to improve the workflow by providing instantaneous feed-
back after each stroke drawn by end-users and by supporting incre-
mental learning. In order to do this, Suzanne only has to edit the
script by adapting how the prediction stream is built. Concretely,
predictions should be updated at each stroke on the sketchpad, but
also when the model is updated after training. The predicted label
should also pre-fill the label input to facilitate data annotation. As
an example, the updated prediction pipeline is reported in List-
ing 2b. Finally, she rearranges the layout of the components in the
dashboard.

Finally, Suzanne can deploy her app online and log data on
a dedicated server by changing the data store’s location from
localStorage to the URL of a remote server. She uses the CLI
to generate this server.

6.1.4 Collaboration with a Designer. After successfully conducting
the study, the application is reused as a installation in a museum ex-
hibition for scientific popularization. Shan is included in the project
and works on a new visual interface using the web framework he

is familiar with. The separation between the ML pipeline and the
visual interface in Marcelle facilitates the integration of the Shan’s
designed interface on top of the existing ML pipeline.

6.2 Discussion

This scenario is largely inspired from the authors’ own research
experience [56]. We developed a similar application for a recent
research study and initiated a collaboration for an exhibition dedi-
cated to the general public. Here, we discuss Marcelle’s potential to
support HCI research.

6.2.1 Rapid iterative prototyping for IML experimental studies. Mar-
celle is particularly well suited to rapidly iterate on a design. While
conducting this research project, we designed two versions of the
app in less than a month of interval. The first version was dedi-
cated to a workshop held on the live-stream platform Twitch, and
the second version to individual think-aloud sessions with par-
ticipants. The first prototype was made to be used by many in a
non-controlled experiment. The second prototype, however, was
designed for a more controlled study. We included the usual el-
ements of experimental design: instructions, a consent form or
questionnaires. We also included a task where participants had to
sort between images that have been well recognised or confused
by the classifier. Dashboard pages were used to structure the differ-
ent steps of a study. Instructions, forms and questionnaires were
integrated using simple text components linking to external on-
line forms. However, it would have been possible to create custom
components for questionnaires with answers recorded in a data
store.

In Marcelle, the combination of streams and data stores enables
flexible logging mechanisms of participants’ actions and application
states. Any stream can be observed and recorded to a data store. For
example, in our study we created additional datasets for recording
every sketch drawn by participants, after every stroke drawn. We
also logged, for each recorded drawing, the model prediction, and
each action (for instance, adding a drawing to the dataset and
training the model) with a time-stamp.

6.2.2 Share transparent and reproducible research. Marcelle appli-
cations run on the web and are easily shareable. Although online
research studies are common, sharingMLmodels that can be trained
by end-users in the browser remains generally challenging. This is
particularly important at the time of writing, since the possibilities
of conducting in-person studies are constrained by sanitary restric-
tions due to the pandemic crisis. With a help of a video-mediated
communication tool, we conducted both a workshop and individual
think-aloud study remotely during the first months of the pan-
demic [56]. Secondly, shareability makes the research process more
transparent and reproducible: one can interact with the system
used in an article, and another researcher could reuse and build
upon the IML pipeline to conduct new research studies.

7 CASE STUDY 2

This section describes how Marcelle can be used to implement
Scenario 2, introduced in Section 2, and discusses the benefits of the
architecture for supporting collaboration between ML practitioners
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and domain experts. A running demo of the case study is available
online6.

7.1 Implementating the Scenario

7.1.1 Integrating Marcelle in a Python Workflow. Louise is a ML
engineer working with Keras, a deep learning library in Python.
From the marcelle python library, she imports the KerasCallback
class. She creates the callback and passes it to the fit method
of her custom Keras model. Listing 3 depicts an example of use
of the callback in a Python script. Louise specifies where to log
the data by indicating the URL of a Marcelle backend, she also
specifies the model formats and some training parameters. This
data is progressively logged to theMarcelle remote data store during
training.

model.fit(
    ...
    callbacks=[marcelle.KerasCallback(
        model_checkpoint_freq=1,
        disk_save_format="h5",
        remote_save_format="tfjs",
        run_params=self.params,
    )],
)

Listing 3: Communicating with Marcelle data stores from

Python is possible using Tensorflow or Keras. For Keras,

Marcelle provides a simple callback to log values and record

model checkpoints along the training.

7.1.2 Creating the ML Expert’s Dashboard. After bootstrapping
an application using Marcelle’s CLI tool, Louise instantiates a
few components in the main script. She uses a component called
trainingHistory to access the log data of her training experi-
ments in Python. She adds a select widget for select specific runs
and a trainingPlot to display loss and accuracy curves. To further
inspect how her model behaves with specific instances, she creates
a simple prediction pipeline combining a tfjsModel model to load
a trained Keras model into the app, and a imageUpload component
to upload images. Model checkpoints are loaded from the remote
data store in the Tensorflow.js format, and inference runs in her
web browser. Finally, by abstracting her prediction pipeline into
a function, she sets up the side-by-side comparison of two model
checkpoints. The resulting interface is shown in Figure 6 (left and
middle panels).

7.1.3 Creating the Clinician’s Dashboard. As Louise’s recent results
are promising, she reaches out to Michel to gather his feedback
on the diagnosis performance. She copies her script to generate a
simpler dashboard: she removes components related to monitoring
the training and complements the prediction pipeline to gather
feedback from Michel. She adds a new select menu and a button
allowing the clinician to correct incorrect predictions, as shown
in Figure 6 (right panel). She creates two datasets to separately
record instances that are correctly or incorrectly classified. That
way, Michel can analyze what images are misclassified. Finally, she
uses a data store to synchronize the model used in both dashboards:

6https://uist2021demos.marcelle.dev

from her developer dashboard, she can select a particular model
version, that is then used by default in Michel’s interface.

7.2 Discussion

This scenario is inspired by recent publications emphasizing the
potential of human-computer collaboration for medical diagnosis,
for instance for skin cancer recognition [63]. While our implemen-
tation is a proof of concept, we discuss how Marcelle can support
the work of ML experts and facilitate their collaboration with end
users, in particular domain experts.

7.2.1 Interacting with Large Models. IML has historically been pro-
posed as a way to involve the user in the model’s training, and
has therefore considered rather small datasets and shallow models.
Interactively training deep models, on the contrary, is not realistic
in many cases, and boils down to fine-tuning as in transfer learning.
However, it is possible to directly interact with their predictions,
which can help developers assess the behavior of models.

Marcelle is well integrated with Tensorflow.js, making it possible
to load models trained with Tensorflow, a widely used ML frame-
work, in order to perform inference in the browser. This enables
both model developers and domain experts to interactively test
how the model behaves, in particular with instances representing
edge cases. Marcelle can easily incorporate new visualizations, and
could support end-user interpretation of ML models using methods
from the explainable ML literature [55, 65].

7.2.2 Strengthening Collaboration to Build More Reliable Models.

In this medical scenario, Marcelle presents advantages for facilitat-
ing the communication between a model developer and domain ex-
perts. First, Marcelle supports an incremental approach where more
elaborate visualization modules can be progressively integrated to
match the user’s needs. Second, data stores provide mechanisms
to communicate data in both directions. For instance, the ML en-
gineer can seamlessly update the model and synchronize it with
the clinician’s interface. In response, the clinician’s interaction can
also record data and annotations to serve as feedback to the model
developer, effectively strengthening their collaboration.

This collaborative authoring ofMLmodels can have an important
impact on ML transparency. There are many documented instances
where intrinsically biased ML models have been harmful to indi-
vidual and communities [52]. Because these critical failures are not
systematically handled by design [50], it is essential to empower
people with diverse areas of expertise to effectively understand,
assess and act upon machine learning systems in various ways in
order to foster accountability and fairness.

8 GENERAL DISCUSSION

We described Marcelle at both a conceptual and an implementation
levels, and we showed how it can be used in two realistic use cases.
In this sectionwe discuss the practical use ofMarcelle from personal
experience, its limitations and the planned development roadmap.

8.1 Working with Marcelle

Working with Marcelle is straightforward for developers familiar
with modern JavaScript and web development. From our experi-
ence using Marcelle, this was particularly handy to develop diverse
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Figure 6: Dashboards for case study 2. The left and middle dashboards are designed for the ML expert, enabling her to interac-
tively compare various training experiments. The dashboard on the right is designed for the clinician to run predictions and
correct misclassifications on his own images.

activities using the toolkit and to easily deploy the outcomes online.
Here we provide examples stemming from the use of Marcelle in a
pedagogical context and workshop activities.

As part of Master’s degree program, we developed a series of ex-
amples to introduce students to machine learning concepts through
learning-by-doing. Using a standalone software could have brought
accessibility issues (licence, compatibility with OS). Installing the
toolkit boils down to the installation of Node.js, available across
OS. However, for accessibility purposes, we also deployed every
example on the Glitch platform so that every student could access
the example, remix the code and edit online7. We found this pro-
cess particularly efficient from a pedagogical perspective, for us
and for the students. We believe that Marcelle can contribute to
the recent pedagogical endeavor on ML education in providing
educational resources to teach the general public about machine
learning [45, 59, 66].

In parallel to the use of Marcelle for pedagogy, we also ran in-
formal workshops with HCI researchers interested in using ML,
and with ML researchers. During these workshops, we designed
more advanced activities such as building custom components to
illustrate the customization potential of the toolkit. Marcelle’s archi-
tecture was designed with loosely coupled components to facilitate
extension. Using the CLI, it is possible to generate component
templates inside existing projects. Once mature, components or
component collections can be published using the NPM registry, en-
abling other developers to integrate them in their applications. As
an example, we implemented a custom component for point-based
visualization using U-MAP [48]. The code for the component is
only 100 lines long and it is quick to implement thanks to seamless
integration of third-party libraries8. Screenshots of applications
created with Marcelle are available in Figure 7.

Workshop attendees were generally highly positive. For instance,
a ML researcher working on image denoising expressed his need
for interactive systems allowing him to explore how various models
react to input noise and found in Marcelle an attractive solution.
Another researcher related a current bottleneck in her collabora-
tion with a radiologist that can be addressed with Marcelle: “the
generation of image segmentation maps has to be done via a python
script, which is not "user friendly" at all for radiologists, and even for

7Some examples are available at at: https://glitch.com/@marcelle.crew/marcelle-
examples
8A demo of the UMAP component is available online: https://demos.marcelle.dev/
umap/

me as an AI researcher, this is a bit tedious as I have to specify the in-
put/output path, launch the script, then open the outputs in a software
or in a Jupyter notebook. It is a real bottleneck for results analysis as
this implies I have to generate the predictions on my own, then send to
the radiologist the predictions, and this is a very inefficient workflow.”

During these workshops, we also asked what would be the as-
pects that would limit the use of Marcelle in their work. To this
question, some mentioned that Marcelle may not be suited to de-
velop advanced tools dedicated to a specific task. One attendee
took the example of image segmentation in 3D. She mentioned that
having the possibility of rotating the volume in 3D, and having the
individual input slices with the overlaid volume at the side could
be hard to get, or a lot of implementation work. Another potential
breakdown reported by attendees is the learning curve in handling
JavaScript, which could spill over into their main activity as ML
researchers.

8.2 Limitations and Future Work
8.2.1 Interoperability. Interoperability is key to foster Marcelle’s
usability. Current interoperability with common ML frameworks
suffers several limitations. First, while Tensorflow.js provides good
compatibility with models trained using Tensorflow’s Python imple-
mentation, inference over models created with other frameworks
such as Scikit-learn or Pytorch cannot be executed in web browsers.
Marcelle currently integrates ONNX.js [49], a JavaScript library for
running Open Neural Network Exchange (ONNX) models in web
browsers, which can only be used for inference. However, at the
time of this writing, ONNX.js runtime only supports a limited set
of operators used in deep learning models. Based on preliminary
prototypes, we plan to develop Python libraries enabling real-time
communication over WebSocket with inference pipelines running
server-side.

Second, Marcelle provides functions to log data from a Python
script during training, however we do not yet support consistent
synchronization of data and models between Marcelle and Python.
In particular, we plan to further integrate data stores within Python
frameworks, by providing appropriate Python interface to use data
store objects within Python scripts. As Marcelle is currently com-
patible with Tensorflow.js, an option would be to provide custom
Tensorflow datasets.

Finally, we plan to provide better integration for Marcelle in
notebook environments such as Jupyter by embedding Marcelle’s

49

https://glitch.com/@marcelle.crew/marcelle-examples
https://glitch.com/@marcelle.crew/marcelle-examples
https://demos.marcelle.dev/umap/
https://demos.marcelle.dev/umap/


UIST ’21, October 10–14, 2021, Virtual Event, USA Françoise et al.

components into notebook cells. Embedding Marcelle into such
widely used programming tool could potentially increase adoption,
further facilitate collaboration and diversify workflows with ML
pipelines.

8.2.2 Data Types and Tasks. Marcelle currently provides good sup-
port for image processing tasks, in particular classification and
segmentation. While we designed its architecture to handle arbi-
trary data types – including images, audio, text, time series and
structured data, – developing components covering such a large
spectrum is time-consuming for a small team of researchers. We
plan to incrementally integrate support for other data types and
tasks. Our choice of a minimalist interface for components is ad-
vantageous for integrating new data formats, input components,
models and visualizations, as it does not require changes at the
architecture level. However, this might lead to a large number of
specialized components rather than a more limited set of compo-
nents supporting polymorphism. Focusing on polymorphic compo-
nents – for instance a generic prediction visualization that would
provide appropriate feedback for classification, segmentation, or
object detection results, – would facilitate the use of the toolkit by
novices, but would hinder customization and appropriation.

9 CONCLUSION
We have presented Marcelle, a programming toolkit implement-
ing our vision for composable interactions with machine learning.
Through two case studies, we illustrated howMarcelle’s component-
based architecture and high-level API enable the efficient devel-
opment of interfaces dedicated to various users: machine learning
experts, designers, domain experts or the general public. Because
components embed both processing and interaction, composing
workflows boils down to (1) creating reactive pipelines linking user
actions to machine learning tasks and (2) assembling components
into user interfaces using flexible layouts. From our own experience,
this approach makes it possible to quickly iterate over designs, and
to reuse and share particular interaction techniques.

Finally, from a theoretical point of view, our conception of in-
teractive machine learning components share similarities with the
notion of information substrates [22]. Substrates are computational
medium that hold information, computation and interaction. They
can be composed, extended or manipulated, and they transcend ap-
plication boundaries. Our architecture provides a starting point for
formalizing interactive machine learning substrates that would be
shared and repurposed across users and applications. We see in this
perspective a promising way to conceptualise our interactions with
machine learning as design material, and to induce fundamental
questions for the field of Human-Computer Interaction.
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Figure 7: Screenshots of existing Marcelle applications and examples. (1-2) Wizard pages dedicated to capturing images from
a webcam and training an image classifier. (3) Dashboard view of the image classifier training, including a visualization of the
dataset and of training logs. (4) Picture of a user interacting with the final application, a web page integrating the classifier
to run real-time predictions and play music loops accordingly. (5-6) Dashboard dedicated to training and interactively testing
a flower classifier from the IRIS dataset. (7) Application running object detection from uploaded images using a pre-trained
model. (8) Custom component implementing U-MAP visualization of an image dataset.
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