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This article presents a gesture recognition/adaptation system for human—computer interaction applications
that goes beyond activity classification and that, as a complement to gesture labeling, characterizes the
movement execution. We describe a template-based recognition method that simultaneously aligns the
input gesture to the templates using a Sequential Monte Carlo inference technique. Contrary to standard
template-based methods based on dynamic programming, such as Dynamic Time Warping, the algorithm has
an adaptation process that tracks gesture variation in real time. The method continuously updates, during
execution of the gesture, the estimated parameters and recognition results, which offers key advantages for
continuous human-machine interaction. The technique is evaluated in several different ways: Recognition
and early recognition are evaluated on 2D onscreen pen gestures; adaptation is assessed on synthetic data;
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method is robust to noise, and successfully adapts to parameter variation. Moreover, it performs recognition
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1. INTRODUCTION

Gesture is increasingly used in Human—Computer Interaction (HCI) involving sev-
eral forms of activity recognition. There is a need for elaborate interaction paradigms
based on body movements (e.g., hand, whole body) or tangible interfaces [Dourish
2004; Jorda 2008] that could enable natural and fluid interaction. Methods for gesture
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recognition [Mitra and Acharya 2007] and continuous gesture recognition [Weinland
et al. 2011] have been proposed and successfully implemented. These methods have
been developed, for the most part, to label gesture. We propose a technique that goes
beyond classification by, complementary to gesture labeling, characterizing movement
execution, providing the possibility of innovative interaction scenarios.

Movement-based interactive systems generally assume a closed action—perception
loop, especially in cases of continuous control. This means that the users continuously
adapt their movements, relying, for example, on visual or sound feedback. The gesture
being recognized might appear as “distorted” compared to gesture references. A robust
recognition system should be able to adapt to such changes. In addition, it would
be useful to estimate parameters of the gesture execution incrementally during the
performance, for two reasons. First, it allows the system to take into account variations
occurring during the motion and update the motion model accordingly. Second, such
parametrization could be directly used in the design of interaction: for example, gesture
size variation might allow continuous control over an expressive component of the
interaction.

We propose a gesture recognition system that is designed to take into account move-
ment variation incrementally during performance and to provide users real-time pa-
rameter feedback. It can accommodate a broad set of gesture variations within each
class, for example, in the speed, amplitude, or orientation. Importantly, these variations
can be estimated continuously during gesture execution.

This system is suited for trajectory-based gestures such as finger trajectories on a
tablet, hand motions manipulating an interface (e.g., game interface or mobile phones)
or free-space body movements. It can be seen as an extension of a previous system we
developed called Gesture Follower [Bevilacqua et al. 2010, 2011b], that was found to be
effective in recognizing and synchronizing continuous execution of gesture to media,
such as sounds and visuals [Bevilacqua et al. 2012; Caramiaux et al. 2010]. It was
shown to be successful for musical control using tangible interfaces [Rasamimanana
et al. 2011; Zamborlin et al. 2014], music and dance pedagogy [Bevilacqua et al. 2011a,
2007], and gesture-based gaming systems [Rasamimanana and Bevilacqua 2012]. This
body of work allowed us to establish a series of requirements that guided the develop-
ment of the method we report in this article:

(1) The training procedure must be based on a single template, to allow users to define
their gesture vocabulary with simple and direct procedures.

(2) Results should be updated continuously during the gesture in order to allow them
to be used in continuous interaction paradigms or for anticipation (as proposed, for
example, by Bau and Mackay [2008]). This generally requires taking into account
the gesture’s fine temporal structure.

(38) Gesture variations that occur during execution should be taken into account and
estimated as a way to encode expressive aspects of the performance.

The Gesture Follower (GF) handles Points 1 and 2, but does not handle Point 3.
The method presented here is a state—space model in which states are variations
to be estimated online. To do so, the method makes use of Particle Filtering that
tackles the challenge of continuously adapting to the gesture variation. Our goal is to
formally introduce the method and show its accuracy with both real-world databases
and interactive applications.

This article is structured as follows. First, we review the state of the art on gesture
recognition systems for interaction (Section 2). This provides the technical motivation
for the design of our method. In Section 3, we present the interaction model that informs
the design from an applicative point of view. The computational model is presented
in Section 4. In Section 5, we present an evaluation on recognition with adaptation
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performed on real data in the case of 2D pen gestures from the state of the art. In
Section 6, we evaluate the process of adaptation to movement variations on synthetic
data. This is followed by a user study assessing the ability of the method to adapt in
real time in an interactive context (Section 7). The results obtained in the previous
sections are discussed in Section 8, together with technical and human constraints of
using gesture variations for HCI. We present conclusions in Section 9.

2. RELATED WORK

In this section, we review the methods most often used to recognize gestures repre-
sented as multidimensional times series for human—computer interaction. Note that
the multidimensional time series represent the trajectory of one point on a surface or
in the 3D space.

For 2D drawing gestures, several basic methods take advantage of simple distance
functions between gestures. Rubine [1991] proposes a geometric distance measure
based on examples of single-stroke gestures. Wobbrock et al. [2007] propose a simple
template-based method that makes use of Euclidean distance after a preprocessing
stage in order to take into account geometric variations (such as scaling and rotation)
and speed variations (by uniformly resampling the data).

Several methods are based on Dynamic Programming (DP) to handle local time
variations. The most widely used technique is Dynamic Time Warping (DTW), that
requires the storage of the whole gesture temporal structure [Gavrila and Davis 1995;
Liu et al. 2009]. A similarity matrix is computed between the test gesture and a
reference template and the optimal path is computed, representing the best alignment
between the two time series. There are various applications such as gesture control
[Merrill and Paradiso 2005], communicative gesture sequences [Heloir et al. 2006], and
querying based on human motion [Forbes and Fiume 2005]. An extension to DTW has
been proposed by Bobick and Wilson [1997], to take into account several examples,
using principal curve in DP computation. A similar approach by Yacoob and Black
[1998] considers an “EigenCurve” representation of several examples and carries out
recognition based on this representation. One of the main drawbacks of methods based
on DP is that they do not provide an explicit noise model, and do not prevent errors
due to unexpected or lost observations in the incoming sequence.

Statistical methods, such as the widely used Hidden Markov Model (HMM) [Rabiner
1989], prevent such shortcomings. HMMs are based on a probabilistic interpretation
of observations (gesture samples) and can model the gesture’s temporal trajectory
through a compact representation. HMMs have been successfully applied in human
motion recognition from vision-based data [Mitra and Acharya 2007]. HMM-based
methods are generally robust since they rely on learning procedures that use large
databases, allowing a model of variations occurring within a gesture class to be created
[Bilmes 2002].

Variations in gesture are thus handled, for the most part, by methods like HMM
that use comprehensive databases, taking into account all possible variations. They
typically require cumbersome training procedures. Consequently, several authors pro-
pose so-called adaptive systems, in which the system adapts to variability of input,
user [Licsar and Sziranyi 2005; Wilson 2000; Caridakis et al. 2009], or sensor location
[Chavarriaga et al. 2013]. These systems are fundamentally not designed to take into
account variations that occur during the movement performance.

In this article, we refer to variations occurring within gesture classes. Wilson and
Bobick [1999] propose a model that takes into account parametric changes in execution.
They describe an application in which bi-handed gesture semantics are related to global
trajectories (for example, actions on an object) while variations provide additional
meaning (for example, the size of the object). In this case, the amplitude is defined
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globally on the whole gesture (see also Brand and Hertzmann [2000]). Wilson and
Bobick [2000], describe an online learning method that can be applied to each different
user. A case study is described in which simple gestures such as “rest,” “down,” and
“up” are recognized.

The Gesture Follower described earlier makes use of the HMM statistical framework,
but with an approach that differs from standard implementations. Initially, the aim of
the GF method was to estimate the time progression of a gesture in real time, using
a template reference [Bevilacqua et al. 2012]. The time progression information can
then be used in the interaction. Similarly to DTW, this method uses the whole time
series and assigns a state to each sample. This allows for the modeling of fine-temporal
gestural structure (similarly to the approach of Bobick and Wilson [1997]). The system
makes use of a forward procedure simultaneously on several template gestures, which
allows for the estimation, during the gesture performance, of its time progression and
likelihood related to each template. However, GF cannot adapt to variations occurring
during the gesture.

We will show in this article that an adaptive approach using an extended state model
and a different decoding scheme is possible. We do this by considering the recognition
problem as a tracking problem, for which Particle Filtering (PF) techniques have been
widely used, and have been proved effective in adapting continuously features of the
tracked objects. An exhaustive review of PF literature is beyond the scope of this ; we
refer the reader to Arulampalam et al. [2002] and Doucet et al. [2001] for more specific
theoretical works on PF. For example, methods based on PF for tracking were used on
hand gestures and faces [Bretzner et al. 2002; Zhou et al. 2004; Mitra and Acharya
2007; Shan et al. 2007]. In these works, PF is used to estimate the position of the area
of importance in image sequences. PF has also been proved efficient when the training
and testing data may have significant differences (see, e.g., Wei et al. [2013] for such
an application), which will be the case in our context of application.

The method we propose is inspired by the work of Black and Jepson [1998a], based on
the condensation algorithm [Isard and Blake 1998], for the recognition of spatiotempo-
ral gesture templates. The model was applied to data recorded using a 2D augmented
whiteboard. The implementation allowed for the tracking of speed and scaling vari-
ation. It will be denoted PF—condensation. A similar inference model has been used
by Visell and Cooperstock [2007] to estimate parameters of a nonlinear dynamic sys-
tem for the analysis and rehabilitation of gait using nonvisual feedback. However, no
experimental results are reported.

In this article, we generalize the approach by Black and Jepson [1998a] by estimating
not only scaling but also other parameters such as rotation, and propose a different ob-
servation function that facilitates parameter estimation. We also propose and evaluate
the explicit use of the estimated variations in interaction.

Since the method we propose can be seen as an extension of our GF system in order
to allow for following variation in the gesture, we will refer it as Gesture Variation
Follower (GVF).

3. INTERACTION PRINCIPLES

We present interaction principles that we consider important for target applications in
sound manipulation or visual processing in contexts such as gaming, interactive art, or
rehabilitation. These interaction principles are grounded in prior works in interaction
design.

According to Verplank et al. [2001], both discrete and continuous commands are
critical to the design of interaction based on motion. Our interaction model incorporates
these two types of control, to return not only which gesture is performed but also how
it is performed. This paradigm can be explained with an example taken from musical
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Fig. 1. Interaction Model. User body motions are sensed by a motion capture device. The proposed algorithm
is then able to recognize the gesture performed, adapt to its variation, and return variation parameters
considering previously learned templates. Recognition and adaptation are performed in real time, which
implies that the algorithm outputs continuously updated recognized gesture and variation values during the
performance. An application is then plugged to the system and returns processed/synthesized audio/graphics.

performance. A musician performs actions that articulate discrete notes but also modify
continuous parameters such as amplitude and timbre. Continuous variation takes place
while playing the note. In our interaction model, a combination of which and how is
seen as critical for expressive interaction [Caramiaux 2012].

The schematic view of the interaction model is seen in Figure 1. User body move-
ment (fingers, hands, whole body) are captured by a sensor system. The data can be
represented as a multidimensional time series. From this representation, the proposed
algorithm is able to recognize the gesture performed, adapt to its variation, and re-
turn variation parameters based on a previously learned template. Consequently, the
model output has two components: an index for the recognized gesture and a vector of
continuous values estimating the variation. Importantly, recognition and adaptation
are performed in real time, which implies that the algorithm continuously updates and
outputs the recognized gesture and variation values during gesture execution.

It is also important that the user be able to easily establish the reference ges-
tures/actions in order to facilitate fast testing sessions. The learning procedure should
therefore remain as simple as possible. Based on this, we explicitly designed our learn-
ing system to require only a single template for defining a given gesture class.

The interaction model can be applied in a range of different application scenarios. In
the user study described in Section 7, we focus on real-time audio manipulation that,
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due to the temporal nature of sound, is suitable for continuous interaction. Motion-
based sonic interaction has been used in various applicative contexts such as for inter-
active motion sonification to help people with visual impairments in various activities
such as sport [Honer and Hermann 2005], audio-motor loop for stroke rehabilitation
[Boyer et al. 2013], everyday activity sonification [Rocchesso et al. 2009], and musical
applications and gaming [Rasamimanana and Bevilacqua 2012]. In these examples,
interaction depends on continuous mapping between movement and audio feedback.
Sound brings an additional information channel to vision that has been shown rele-
vant for temporal data and temporal data with recurrent patterns [Barrass and Kramer
1999].

To that extent, we designed a computational model motivated by the presented
interaction principles and types of application. The next section presents the technical
description of the method whose main features, gesture recognition and adaptation to
movement variation, will be evaluated in the subsequent sections.

4. COMPUTATIONAL MODEL

Our working definition of gesture is body limb movement represented by a temporal
series of a fixed number of parameters. For a given input gesture, the recognition task
selects the best match among a set of prerecorded template gestures. The input gesture
is denoted z = z; ...zy (or z;.y) and the template gesture is denoted g = g;...gr (or
g1.7). z can be of different length than g. As described in the next section, we use a
Bayesian approach with a continuous state representation. The model is inspired by
the work of Black and Jepson [1998b]. In our system, we explicitly changed the latent-
state space in order to fit the constraints of the interaction scenarios described earlier.
In addition, we propose the use of an alternative observation distribution allowing
for less dependency on the model parameters, which has critical consequences for its
practical use.

4.1. Continuous State Model
The model can be formulated with the following dynamical system:

Xk = frr(Xp-1, Vi-1) (1)
z, = fop(Xp, Wi; g)

where, at discrete time £,

—X, is a vector representing the system state, state elements are the varying gesture
characteristics;

— frr is a (possibly nonlinear) function that governs the evolution of the system state,
depending on x; 1 and an independent and identically distributed (i.i.d.) process
noise sequence vy;

— foB 1s a (possibly nonlinear) function that generates the observations z;, depending
on the system state x;, an i.i.d. measurement noise sequence w;, and a template
gesture g.

The problem is formulated as a tracking problem, that is, tracking and adapting to the
values of x;. Precisely, state variables x;, are the varying gesture characteristics (speed,
size, etc.) that are chosen depending on the input signal and the context, as detailed
in Section 4.2. Estimation of varying characteristics is governed by the particular
form of transition between states, frgr (described in Section 4.3) and an observation
function fop (Section 4.4) used to compute the likelihood of the estimation according
to the incoming gesture z and the template gesture g. The extension of the tracking
algorithm for the recognition task is detailed in Section 4.6. The inference is based on
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Fig. 2. Illustration of the alignment and adaptation. An incoming gesture z is aligned onto a template
gesture g based on the continuous adaptation of gesture features x;, illustrated as p;, and sz in the figure.

particle filtering with a resampling process. The inference used in the model is reported
in Appendix A.1.

4.2. State Space Model

A critical aspect of the model design is defining the state space. The state of the system
is composed of the varying gesture characteristics that have to be estimated over time.
The state space comprises the features we are able to assess online and, consequently,
used as continuous outputs during the interaction (see Figure 1).

The process is adaptive since the features are updated at each time step. Formally,
the system state at instant % is denoted as:

x;(1)
X, = . € RD

xx(D)

where D is the dimensionality of the state space.

In our model, the first dimension x;(1) is set to be the phase p; at discrete time
k, which represents the alignment between the template gesture and the incoming
gesture at time £, as illustrated in Figure 2 (or p, can be seen as the time progression
of the gesture). The phase is normalized in the [0,1] range (0 being the beginning and
1 the end of the gesture time).

The second dimension x;(2) is set to be the speed v, at k. The speed v}, is actually a
speed ratio between the speed of the incoming gesture (first derivative of the phase) to
the speed of the template gesture.

The state space can contain additional dimensions. In particular, we will extend it to
include other features such as the scaling (i.e., amplitude ratio; see Figure 2), and the
rotation angles in three dimensions.

The configuration of the state space depends on two independent criteria. First, the
input data drives the type of feature we can track. As an example, the notion of rotation
does not represent the same feature for 2D shapes performed on a tactile surface and
for 3D accelerometer data. Second, the applicative context also drives the state space in
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order to make the estimated features suitable and usable in a given scenario, which will
be discussed later. Note that defining the state space does not depend on the gesture
template g.

4.3. State Transition

In the proposed model, the state transition function frgr (see Equation (1)) is linear,
given by the matrix A, and modeled probabilistically as a Gaussian distribution:

P(Xp|Xp—1) = N(Xp|Axp_1, )

. (2)
Y = dlag(al .. .O’D).

We choose to add a constraint by setting the relationship between the phase and
the velocity, corresponding to a first-order motion equation (other choices can easily be
made):

Ph=Pi1 + 7 + N(0,01) 3)
where T is the template’s length and o7 is the first element in the diagonal of . This
constraint can simply be taken into account by setting the first row of the matrix A to
(1 % 0 ---0). The other terms, set to zero in the first row of the matrix A, implies that
the estimation of the phase is independent of the other features (x;(j), j > 2).

The transition parameters play an important role on adaptation, as we will show in
Sections 5 and 7. They govern the dynamic of the variation estimations: the speed of
convergence to the accurate estimation and the precision of the estimation.

4.4. Observation Function

The observation function evaluates the accuracy of the state estimation according to
the input observation and the template. Parameters of the observation function govern
how discriminant the method is.

In our model, the observation function fop (see Equation (1)) is chosen to be a
Student’s t-distribution that depends on three parameters: the mean u, the covariance
matrix ¥, and the degree of freedom v. For a K-dimensional input vector z; at time £,
the Student’s t-distribution is as follows:

2 —uK
d=(zp, ]:(Xk, g))) @)

St(za) fxi, g(p), B,v) = C(3, v) (1 N
where
r(v/2+ K/2) |x|71/2
) =
C(%,v) T2 n)kR
where f(xz, g)is a function of the template g and the state value at k. Precisely, f(xz, g)

adapts the expected template sample g(pz), given the phase p, at k. The distance d
between the adapted template sample and the incoming observation is given by:

d(zy, Fx4 8) = 125 — Fx4 @17 T2 — f(x5, ). (5)

The choice of Student’s t-distribution is motivated by its heavier tails compared to
Gaussian distribution (i.e., the distribution is wider around the mean). In the limit
v — 00, the t-distribution reduces to a Gaussian with mean u and covariance . We
will see in Section 5 that the choice of the Student’s t-distribution has interesting
properties that can reduce the sensitivity of the system to the covariance matrix.
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4.5. Inference and Implementation

Real-time estimation of the state values (inference) is performed using PF, a special
case of the sequential Monte Carlo method. Sequential Monte Carlo methods work
by recursively approximating the current distribution of the system state using the
technique of Sequential Importance Sampling: state samples are drawn from a simpler
distribution and then weighted according to their importance in estimating the “true”
distribution. Importance is driven by incoming samples. At each step &, a particle x;,
represents a possible value of the state space that is weighted by its probability wy,.
The expected value of the features, at time £, is:

Ny
& § [’
X, = wkxk,
i=1

where N; denotes the number of particles. Inferred feature values X; constitute the
adaptation process since at each time &, we assess the variation values defined as state
variables. The PF algorithm is reported in Algorithm 2 in Appendix A.1 together with
the GVF algorithm pseudocode (Algorithm 1)!.

4.6. Handling Recognition

Finally, we extend the model to handle recognition by taking into account several
templates. To do so, we must change the state space in order to estimate the likeliest
template in addition to the varying gesture characteristics.

Consider M templates of respective length L ... Ly denoted g'...g". At initializa-
tion, we assign to each state particle x), a gesture index between 1... M (denoted my),
based on a initial distribution. Generally, a uniform distribution is chosen, that is,
by distributing particles evenly across the gesture templates. This extends the state
configuration applied to each particle as follows:

x,(1)
X, = E e RP x N. (6)
x;,(D)
my,
The transition probability is then adapted as follows:
p(xjIx; ;) = N(x}/Ax;, ;. T)

(7)
¥ = diag(oy...op0).

By summing the weights w}‘e corresponding to the particles’ gesture indexes, it is
straightforward to compute the probability of each gesture:

p(ghlgl) =Y wi. Viell.Ml.Vme [l Ml.m#1

jeJ
where J ={je[l,NJJ/xi(D+1)=1}. (8)

5. RECOGNITION TASKS ON REAL-WORLD 2D GESTURE DATA

The goal of the experiment is to assess the recognition accuracy of the proposed
method on a state-of-the-art database, comparing it with established techniques. We

INote that the algorithm has been implemented in C++ and is also available online, and starts to be used in
other projects: http://www.github.com/bcaramiaux/gvf.
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Fig. 3. Gesture vocabulary as defined by Wobbrock et al. [2007]. Figure adapted from the original article
©ACM.

use the database by Wobbrock et al. [2007]. of 2D pen gestures.? The database con-
tains 16 gestures that are meant to be commands for selection, execution, and en-
tering symbols in HCI applications (Figure 3). It has been created as follows. Ten
participants were recruited to perform 16 gestures. For each gesture in the vocab-
ulary, “subjects entered one practice gesture before beginning three sets of 10 en-
tries at slow, medium, and fast speeds” [Wobbrock et al. 2007]. Hence, the whole
database contains: 10 participants x 16 gestures x 3 speeds x 10 trials = 4800 gesture
examples.

We used this database to test the recognition accuracy of GVF. We used the same
evaluation procedure as Wobbrock et al. [2007], based on a statistical “leave-one-out”
approach. One template per gesture is randomly chosen from the 10 trials, and one test
example is chosen randomly from the remaining trials. This process is repeated 100
times. The procedure is applied in four distinct tests: (1) replicating Wobbrock’s evalua-
tion procedure; (2) looking at the effect of changing distribution parameters; (3) taking
training and testing examples randomly from different speeds; and (4) assessing the
recognition accuracy on partial gestures as the testing gesture is being performed. In
tests 1, 2, and 4, the training examples and the testing examples are taken from the
same speed (either slow, medium, or fast). In test 3, the training and testing examples
are taken from two different speeds.

Wobbrock et al. use the database to propose a simple gesture recognition method
that performs a preprocessing step to rotate, scale, and translate data before apply-
ing different recognition algorithms. Importantly, the rotation angle and the scaling
coefficient are considered to be invariant in the recognition process.

Our proposed method, GVF, adapts to, and is able to report on, variations in these
characteristics. Consequently, the state space x; is comprised of four elements: the
phase pz, the speed vy, a scaling coefficient s;, and the angle of rotation «y. The number
of particles is set to N; = 2,000. The complete model used for 2D input is detailed in
Appendix A.2.1.

2Database available at: http:/depts.washington.edu/aimgroup/proj/dollar/.

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 18, Publication date: December 2014.


http://depts.washington.edu/aimgroup/proj/dollar/.

Adaptive Gesture Recognition with Variation Estimation for Interactive Systems 18:11

Table I. Results Obtained on a Unistroke Gesture Database Presented
by Wobbrock et al. [2007]

$1 recognizer ‘ DTW GF GVF
offline online online
operated after no adaptation of | incremental adaptation of
scaling and scaling neither scaling and
rotation estimation rotation rotation
Mean 97.27 % 97.86 % 95.78 % 98.11 %
Std 2.38 % 1.76 % 2.06 % 2.35 %

Our model has the following parameterization: o = 130, v = 0.1.

5.1. Recognition Results for Same-Speed Examples

GVF was compared to three other methods using mean and standard deviations for
recognition rate (Table I). Two of the methods ($1 recognizer and DTW) are offline
methods. They both ran following a preprocessing step to correct for variations in
scaling and rotation. $1 recognizer is based on the Euclidean distance between the
uniformly resampled template and test shape. DTW is based on the Euclidean distance
between the temporally aligned template and test shape. The other two methods—GVF
and GF—are online methods, reporting results as the gestures are performed. Contrary
to GF, GVF can incrementally adapt to dynamic scaling and rotation variation.

First, a comparison of recognition rates of the online methods show that GVF gives
better results than GF (98, 11% vs. 95, 78%). This is due to the fact that GVF adapts to
scaling and rotation. Next, comparing our method with the offline methods, GVF gives
slightly better results to the $1 recognizer and to DTW. These results are consistent
with what was expected, confirming that the incremental adaptation of GVF is effective,
and that the recognition accuracy of this online method can be at least as equivalent
to standard offline methods that correct for invariance.

5.2. Influence of the Observation Distribution Parameters

We describe here how the parameters, standard deviation ¢ and Student’s v (used
in the observation function, Section 4.4), influence recognition accuracy. Results were
obtained for a fixed set of these two parameters; we report on the recognition rate for a
large set of o values (from 10 to 150 with step = 10) and v values (0.5, 1.0, 1.5 and co =
Gaussian distribution). Note that these values are related to the range of the input
data. In the case of the database considered here, the range is [5, 181].

The variability of the recognition rate is plotted in Figure 4, superimposed on the
results obtained with the $1 recognizer and DTW (methods that do not depend on
distribution parameters).

Two important points must be noted. First, the best recognition rate is obtained, as
expected, for a restricted range of o and v values. Nonetheless, the recognition varies
smoothly, with a single maximum (no other local maxima). Second, the Student’s t-
distribution is advantageous to the Gaussian distribution (v = 00), since it significantly
reduces the sensitivity of the recognition rate to o values. This demonstrates that data-
specific training procedures may not be required, since the recognition remains optimal
over a large range of the Student’s t-distribution parameters.

5.3. Recognition Results for Cross-Speed Examples

Complementary to the previous tests, we conducted an evaluation of recognition ac-
curacy taking a training example from a given speed and testing with an example
from the database at another speed. Table II reports the mean recognition accuracy in
percent.
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Fig. 4. Recognition rates obtained from the 2D pen gesture database by evolving observation distribution
(defined as a Student’s t-distribution) parameters o and v. While o evolves from 10 to 150 with a step = 10,
v takes 4 values: 0.5, 1.0, 1.5, and oo.

Table II. Cross-Speed Results Obtained on a Unistroke Gesture Database Presented by Wobbrock et al. [2007]
Considering Training and Testing Examples from Different Speeds o = 130, v = 0.1

TRAINING EXAMPLES
Slow Medium Fast
$1 | GVF $1 | GVF $1 | GVF
TESTING Slow 96.2% | 97.3% | 94.9% | 93.2% | 91.6% | 85.9%
ExamprLes | Medium | 96.1% | 95.4% | 97.1% | 98.6% | 94.1% | 96.6%
Fast 92.9% | 88.3% | 94.6% | 97.5% | 95.5% | 98.2%

The results show that the global recognition rate obtained with GVF remains high
at 94.6% (std = 4.6%) and is equivalent to the $1 method that obtains a recognition
rate of 94.8% (std = 1.7%). The lowest rates are obtained when both the testing and
training examples are taken from contrasted speeds: either slow—fast (recognition rate
at 88.3%) or fast—slow (recognition rate at 85.9%).

5.4. Early Recognition Results

Finally, we assess the evolving recognition rate while the testing gesture is performed,
also called early recognition. Figure 5 illustrates the results that are compared to the
GF early recognition rates. The recognition rate obtained with GVF attains 67% when
just 10% of the gesture has been performed, and goes up as more of the entire gesture is
available for continual testing. A 90% recognition rate is reached at 40% of the gesture,
on average. On the contrary, GF globally attains lower recognition accuracy.

5.5. Observations from the Evaluation of 2D Gesture Database

The experiment on 2D drawing gestures presented in this section confirms that the
GVF method works equally or better than state-of-the-art recognition methods. This
demonstrates that the online scaling, rotation and speed estimation of the GVF method
performs at least as efficiently as standard offline methods ($1 recognizer and DTW
implementation of Wobbrock et al. [2007]). The GF, which does not take into account
such invariance, performs worse.
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Fig. 5. Early recognition rates obtained with GVF and GF For a more complete study of the GF evaluation
on the same database, refer to Zamborlin et al. [2014].

Compared to the GF method, which uses a Gaussian distribution for observation
likelihood function, the GVF method uses a Student’s t-distribution. This choice sig-
nificantly reduces the sensitivity of the standard deviation parameter o. Since this
parameter might a priori be difficult to estimate with limited training data, the use of
Student’s t-distribution can broaden the applicability of the method.

In addition, the results obtained with GVF are remarkable considering the fact that
it operates in a causal manner: the recognition results and the parameters adaptation
are updated each time a new sample is received. On the contrary, standard recognition
schemes compute the results only once the gesture is finished (as DTW, Rubine, or
$1 recognizer), which generally allows for a more comprehensive decoding algorithm.
Thus, it demonstrates that the causal inference is robust, thanks to the coupling im-
posed between the phase and velocity estimation. Precisely, the phase and velocity are
coupled through a kinematic model (similar to a Kalman filter; see Section 4.3). This
forces the tracking to be continuous along the state sequence.

Finally, the early recognition has been shown to be accurate. We reached a recognition
rate of 65% by considering only the first 5% of the gesture performed. In comparison,
GF needs almost 35% of the gesture to be completed before reaching the same level of
recognition accuracy. This is a clear advantage for the aimed interactive applications.

6. ASSESSING ADAPTATION ON SYNTHETIC DATA

In this section, we present an evaluation of GVF for the adaptation task, independent
of recognition. Since it would not be possible for a human user to provide ground truth
on which we could evaluate the ability of the algorithm to adapt to varying features,
we use synthetic data as a means to provide controlled, quantitative variations. We
consider two different cases. In the first, only the phase and scaling are adapted in the
inference. In the second case, the system also adapts to rotation angle.

In both cases, we consider synthetic data obtained by using Viviani’s curve:

x(t) = a(l + cos(?))
Cit) =1 y@) = asin(?) 9
z(t) = 2asin(¢/2)
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6.1. Temporal Alignment Assessment

We define two distinct curves for the test and template data. The template gesture
is obtained by a regular sampling of the curve described by Equation (9). The input
gesture is obtained by a nonlinear sampling (¢t — t3) of the same function, and by

adding a uniformly distributed noise. We denote with C and C the original and the
resampled curves, respectively.

C®) = C#) + N(0, o¢) (10)

For this first case, we used a state space defined as a 3D vector, consisting of the
phase py, the speed v, and the scale s, (this model is similar to the one presented by
Black and Jepson [1998a]):

X, = (P, v s2)7 € 10, 1] x R2,

The phase feature p; lies in the interval [0, 1]. The velocity v, and scale s, are
normalized, a value of 1 corresponding to the speed (scale, respectively) of the template.
The f function involved in the distance function for the observation likelihood (see
Equation (5)) is

f(xp, g) = diag(sp)g(pr),

where diag(sy) is the diagonal matrix, with a size of 3 x 3, the elements of which are
equal to the scaling s;. The scaling coefficient is identical for all three input observations
x(t), y(@), z(t) (homothetic transformation).

In this first experiment, we compare GVF with the GF model. To do so, we set v — oo,
converging to the Gaussian distribution with standard deviation ¢ used in the GF. The
influence of the v value will be discussed in Section 5.

We present here results regarding the estimation of the phase pg, which describes
the alignment between the test and template data. For each test, our model returns the
estimated phase p;, which, in this evaluation, should ideally follow the cubic function

that was used to synthesize the curve C. From this, we calculated the mean square
error between p, and the ground-truth cubic function 2. The number of particles was
set to N; = 1,800.

In addition, we compare the estimated phase p; obtained by GVF against the same
estimated alignment feature obtained by GF. The results are seen in Figure 6. The
estimated phase py, is plotted along the cubic function (at the top of Figure 6). For both
models, the estimated p; is close to the expected curve (Figure 6, middle and bottom
plots). The average error for GVF (GF, respectively) is 1.3 sample with std = 0.7 (2.3
samples with std = 1.4, respectively).

We further examined the influence of the parameter o, used in the probability dis-
tribution, as well as the noise level in the input data (measured as the signal-to-noise
ratio [SNR] in dB). Figure 7 shows those results. On the left-most plot, we varied o
between 0.05 and 1.0 (with a step of 0.05), for both GVF and GF. On the right-most
plot, we varied the noise level in the input data (SNR was varied between 12dB and
45dB). In both plots, the gray curve is the error curve obtained from the GF model and
the black curve is from our model.

We found first that, for all o values between 0.05 and 1.0, the errors for our model are
lower than for the HMM-based model (Figure 7, left). Interestingly, our model, based
on approximative inference (particle filter), can obtain better results than the exact
inference of GF (forward procedure). This is due to the continuous latent model that
better represents the data as well as the fact that p, and v, values are linked through
a first-order motion equation, while such a constraint is not taken into account in the
GF model. In other words, the phase p; estimation is made more robust by the joint
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Fig. 7. Error curves obtained from both our model (black line) and GF (gray line). The error is computed
from the mean square error between the ground truth cubic function and the estimated phase. On the left,
the tested parameter is the parameter o of the Gaussian distribution of the observations. On the right,

the tested parameter is the noise level in the input data, given by the standard deviation of the additive
Gaussian noise.
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Fig. 8. Dynamic rotation estimation. The input curve is the one given by Equation (11) with o¢ = 0.1. The
model is configured to estimate the phase pp, the speed vz and the three angles ¢z, 0r, Y. The standard
deviation used in the model is 0.1.

estimate of the speed v;. Second, we found that our model better handles the level of
noise in the input data compared to GF (Figure 7, right).

6.2. Rotation Matrix Adaptation

In this section, we examine the case in which gesture rotation angle varies dynami-
cally over time. We consider the three angles ¢, 6, ¢ around x, y, z, respectively, in a
Cartesian coordinate system. Their time series are defined as follows:

B(t) = t*
o) =t (11)
w(t) — —t1/3

The 3D template curve C (Equation (9)) is rotated according to this matrix in the
Cartesian frame (x,y, z). The input curve is the rotated version of C, with added
Gaussian noise:

Ct) = Rp@), 6t), ¥ ()C®) + N(0, o¢)

The rotation matrix R(¢(z), 0(t), ¥(¢)) is computed each time step. Details on our
use of conventions for angles and rotation in the 3D Cartesian frame are given in
Appendix A.2.

The state space is defined as a 5D vector that consists of the phase py, velocity vy,
and the angles ¢, 6;, Y. The state variable at time £ is:

X, = (Dhs Uk Gk O, ¥)" € 10, 1] x R
The observation likelihood is entirely defined by the following f function:

Xz, 8) = R(¢r, Or, Y1)g(pr).

Figure 8 shows an example in which the estimated angles ¢, 0, ¥, are plotted
against the ground truth (defined by Equation (11)). In this example, the standard
deviation o is set to the standard deviation of the input data (¢ = o¢ = 0.1). The
number of particles was set to IN; = 1800.

We performed the same evaluation as the one assessing temporal alignment. We
tested the effect of the standard deviation o of the Gaussian observation distribution
by varying its value between 0.05 to 1.4 (step = 0.05) as well as the effect of noise in
the input data, varying the SNR between 3dB to 30dB. Figure 9 reports the results.
On the left, we report the error curve function of o. On the right, we report the error
curve function of data noise given by the SNR. In both cases, the error is computed as
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Fig. 9. Error curves obtained from our model. The error is computed from the mean square error between
the ground truth angles and the estimated ones. On the left, the tested parameter is the parameter o of the
Gaussian distribution of the observations. On the right, the tested parameter is the noise level in the input
data, given by the standard deviation of the additive Gaussian noise.

the mean square error between estimation of the angle ¢, 6, ¥ and the ground truth
angles.

First, the results illustrate that the standard deviation o of the observation distri-
bution has a weak influence on the angle accuracy (Figure 9, left). For small values
of o, the error curve shows more variations than for higher values of o, where the
adaptation is more stable.

Second, the noise in the data has a significant influence on the angle accuracy, as
shown in the right panel of Figure 9. The error curve increases as noise level increases
(i.e., decreasing SNR).

6.3. Observations from the Evaluation of Synthetic Data

The results of this evaluation show that for a fixed parameter o and a fixed level of
noise, the temporal alignment is reliable (the average absolute error is 2.3 samples
with a standard deviation of 1.4). For an incoming data stream at a sampling period of
20 ms, this means that the results would be estimated with a latency of just 46 ms.

Both evaluations of the temporal alignment and the rotation angle estimation showed
that the errors obtained while varying the parameter ¢ remain low and barely vary.
This is important considering that only one or few examples are available for training
the model: the o value can be easily initiated and easily optimized.

The evaluation also shows that the level of noise in the data has an expected effect
on the accuracy. The error can be diminished by increasing the number of particles
(which increases the computational cost) and by optimally adjusting the variance in
the observation distribution. Nevertheless, the algorithm still operates even in the
presence of significant noise.

7. USER STUDY: ADAPTATION AND RECOGNITION IN AN INTERACTIVE SCENARIO

In this section, we present a user study evaluation of the GVF method in an interactive
context using 3D gestures. We assess the ability of the method to efficiently recognize
real-world gestures and adapt to their variation in a context in which users’ arm
movements manipulate audio playback and processing.

7.1. Study

7.1.1. Presentation. We built an application that uses sound feedback to respond to
salient gesture variation. Performing a given gesture initiates a specific sound, which is
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Fig. 10. Gesture vocabulary and sounds associated.

then continuously manipulated depending on how the gesture is performed. Interaction
with the application involves the two fundamental aspects of the interaction model
illustrated in Figure 1: selection (discrete command) and manipulation (continuous
command).

—Selection. As our method allows for early recognition, recognition output will be
used to trigger a sound associated with the gesture performed while the gesture is
still being executed. We built a vocabulary of 3 gestures taken from the previous
experiments presented earlier. Each gesture has an associated sound. Figure 10
illustrates each gesture and associated sound. Each sound is short, an average length
of 4.9 seconds (o = 0.7 sec).

Given the ambiguity that continuous recognition has in recognizing at the beginning
of gesture performance, in the application we will trigger the sound as soon as the
recognized gesture has a probability greater than 0.5.

—Manipulation. Variations in gesture characteristics of the recognized gesture are
estimated and used to continuously manipulate sound characteristics. In the ap-
plication, we allow the following gesture variations: slower/faster, smaller/bigger,
tilt. Variation in gesture speed, relative to the template gesture, is mapped to time
stretching of the sound playback. Variation in size is mapped to the volume of the
sound: a smaller gesture will play a sound more quietly while bigger gestures play
the sound louder. Finally, variation in tilt controls the cut-off frequency of a high-
pass filter, creating a stifling, distancing effect. Figure 11 illustrates the variations
allowed in the application and their link to sound manipulation.

7.1.2. Hypothesis and Experiment Design. In this study, we seek to validate the hypothesis
that our algorithm is able to dynamically and accurately adapt to gesture variation in
order to be used in a closed-loop, gesture-to-sound interaction.

In order to validate this hypothesis, we propose to define a set of tasks asking the
participant to play a given sound and to modify it (through one, or a combination of
multiple, variations). To that extent, the participant must use the sound feedback,
entirely controlled by the estimated variations, in order to achieve the task. A set of 7
sound modifications corresponding to gesture variations (Figure 11) are summarized
in Table III. Note that Task 1 does not involve any variation, Tasks 2 to 4 involve a
global modification of one aspect of the sound, Task 5 involves a dynamic change of one
characteristic and Tasks 6 and 7 involve the global change of two characteristics of the
sound. The study follows a within-subject design with one factor tested: the Task.

7.1.3. Apparatus. Participants perform free-space gestures with their hand. The hand
motion is captured through an infrared-based device tracking finger and hand motion?.
3Leap Motion, http://www.leapmotion.com.
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Fig. 11. Gesture variations allowed in the application: variations in size, speed, and tilt. Each variation is
used to control the sound feedback parameter: loudness, playback speed, and filtering.

Table Ill. Set of 7 Tasks Employed
in the User Study

Modifications
Id. Description
T1 | Original
T2 | Louder
T3 | Faster

T4 | High-pass filtered

T5 | Louder then quieter

T6 | Slower and quieter

T7 | Louder and high-pass filtered

The device returns the position in the 3D space of the palm’s centroid sampled at 80
frames per second. The data are then slightly downsampled in the application at a rate
of 50Hz. The application is implemented in the real-time audiovisual programming
environment Max/MSP*. The raw 3D gesture data are used as input data for the GVF
implemented as a plug-in in Max/MSP (note that the code source is open and available
online®). The output of the GVF is mapped to parameters of a phase vocoder synthesizer,
SuperVP®. Participants listened to stereo audio feedback through a pair of high-quality
speakers set up in an isolated control booth.

7.1.4. Procedure. The procedure is comprised of three steps. In Step 1, the participants
are asked to perform each gesture a few times in order to get accustomed to the
apparatus. The gestures themselves were chosen to be fairly simple and do not require
a time to be mastered by the participants. After the participant has practiced several
times, we record one example of the gestures the GVF template that will subsequently
be used for recognition and adaptation.

4http://www.cycling74.com.
5https://github.com/bcaramiaux/gvf.
6http://forumnet.ircam.fr/product/supervp-max/.
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In the second step, we introduce the sound playback and processing part of the
application to the participants. We explain that each sound is associated with one
gesture and we play each of the sounds as an example. We then explain the mapping,
telling them that performing a gesture will trigger the associated sound and will vary
some specific aspect of the sound. In order for them to understand the mapping, we
give them a few minutes to freely explore the interaction.

Step 3 is the main part of the experiment: the controlled session. During this part, for
each of the 3 base sounds, the participants are asked to play the sound by performing
the corresponding gesture and modify it by applying specific variations reported in
Table III. The order of the tasks presented is randomized as well as the order of the
gestures. Participants have an unlimited number of trials to play a sound in a given
task. Once they feel comfortable, they record the gesture 3 times.

7.1.5. Data collection and Analysis. We invited 10 participants to be part of the user
study. All of the participants have a background in sound or music, meaning that
they understood the audio processing nature of the task. We collected a total of 10
(participants) x 3 (gestures) x 3 (trials) x 7 (tasks) = 630 gesture examples.

For each gesture collected, we analyzed the data by computing the relative size and
speed. The relative size is given by the square root of the quotient of the area of a given
gesture, performed under task i, divided by the area of the same gesture recorded
as the reference in the first step of the experiment (see Section 7.1.4 for the whole
procedure). Similarly, the relative speed is computed by taking the length of the given
gesture (under task i) divided by the length of the reference gesture. We call such
characteristics we computed offline postprocessing analysis to distinguish them from
the online estimation returned by GVF.

Statistics on GVF variation estimation is done by taking the estimated value at
75% of the gestures. The rationale behind the choice is that taking the mean over
the whole estimation, from the starting point of the gesture to the ending point, will
underestimate the actual estimation since the starting values (initial conditions) are
always 1 (the original size and speed deviation) or 0 (original angle deviation).

Finally, we compute the characteristics of each sound produced in order to assess if
the participants actually achieved the task. By analyzing the audio signal, we compute
three characteristics: relative amplitude, relative duration, and the relative spectral
centroid. The three characteristics are relative to the original sounds in the database.

7.2. Assessing Recognition Accuracy through Selection Rate

An initial quantitative evaluation of the recognition was carried out on the GVF esti-
mated gesture probabilities for the three trials recorded by the participants for each
gesture and each task. Here we report the statistics on recognized gestures across all
the participants. Overall, we found a recognition rate of 97.3%. Over the 610 gesture
examples, the algorithm misclassified only 17 of them.

We then performed an analysis to assess the ability of GVF to provide real-time
recognition of the input gesture. A gesture is considered recognized and triggers the
corresponding sound when its probability with respect to the others is greater than
0.5. We computed the point within the incomplete gesture on average recognition is
achieved. The results (Figure 12) show that recognition is achieved, on average, at
12.6% (std = 2.4%) into the gesture (where 0% is the beginning of gesture and 100% is
gesture end). Converted to time, the average latency created by this selection criterion
is 490.6ms (std = 70.2ms).

The sound-manipulation phase based on variation adaptation starts once the selec-
tion has been made. In the following we turn our attention to this part of the task.
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Fig. 13. Task 2: Playing the sound louder. Significance code: **p < 0.01, *p < 0.05.

7.3. Adaptation of One Characteristic

Participants are asked to change one characteristic of the sound: volume (Task 2),
speed (Task 3), or filter (Task 4). We report on the results from these three tasks in the
immediately following sections. We compared the statistics from Tasks 2, 3, and 4 with
the statistics obtained from Task 1: playing the original sound. We used a Student’s
T-Test with « = 0.01 to assess differences between mean values obtained between these
two tasks.

7.3.1. Task 2: Playing the Sound Louder. Figure 13 shows results obtained from Task 2
compared to Task 1. On the left is the average estimation of relative size according to the
task for both the online results reported by GVF (green) plotted next to postprocessing
analysis (yellow) as reference. The right side of the figure shows the actual relative
audio amplitude computed by analyzing the sound output.
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Fig. 14. Task 3: Playing the sound faster. Significance code: **p < 0.01, *p < 0.05.

First, the right side of the figure shows that the participants successfully accom-
plished the task by producing a sound that was louder than the original sound (mean
values for the audio amplitude are significantly different between Task 1 and Task 2,
p <0.01).

Let us now inspect the gesture sizes on the left side of the figure. The mean relative
size values obtained by postprocessing analysis shows a significant increase between
Task 1 and Task 2 (p < 0.01), meaning that participants did actually perform a bigger
gesture. Regarding the estimated relative size by GVF, it also shows a significant in-
crease between these two tasks (p < 0.01). In addition, the estimation values obtained
from the postprocessing analysis and by GVF do not differ at a significant level, which
means that GVF converged to the actual global size of the gesture.

7.3.2. Task 3: Playing the Sound Faster. We perform a similar analysis for participants
asked to play the sounds faster (Task 3) compared to the original (Task 1). The results
obtained are illustrated in Figure 14. The left side of the figure shows the average
estimation of the relative speed reported online by GVF (green) and by postprocessing
analysis (yellow). On the right, the actual resulting average relative sound durations
are calculated from the recorded sound output.

The right side of the figure shows that the mean sound duration is significantly lower
for Task 3 than Task 1 (p < 0.01), which means that the participants achieved the task
by producing faster (i.e., shorter) sounds. Note that participants seemed to play the
sound slightly slower than the real sound when asked to play the original sound (the
mean relative duration is 1.3, std = 0.6).

If we examine the relative speeds of the gestures performed to produce the sounds
(Figure 14, left), the postprocessing analysis shows a significant increase in the relative
speed between Task 1 and Task 3 (p < 0.01), meaning that the participants performed
their gesture faster in order to play the sounds faster. Regarding the online estima-
tion given by GVF, the relative speed also significantly increases between Task 1 and
Task 3 (p < 0.01).

7.3.3. Task 4: Playing the Sound High-Pass filtered. Finally, we examine the angles of rota-
tion estimated in the experiment. The left side of Figure 15 shows the norm of the vector
of the three relative angles (¢, 6, ) estimated by GVF. Note that the postprocessing
analysis is not reported here. Postprocessing analysis using Horn’s quaternion-based
method has been tested on the data and returned inconsistency. This was due mainly
to the fact that the tilt was not constant over time due to the lack of physical reference
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Fig. 15. Task 4: Playing the sound high-pass filtered. Significance code: **p < 0.01, *p < 0.05.

in free space to maintain constant tilt. On the right side of Figure 15, we report the
average relative spectral centroid values computed from the sounds produced for Tasks
1 and 4 compared to the original sound (1.0).

The relative spectral centroid values in the audio output (right) show a significant
increase between both tasks (p < 0.05). The mean frequency in the sound produced
increases, revealing the application of a high-pass filter. Regarding the estimation of
the angles (left), the norm of the relative angle also increases between Task 1 and Task
4 (p < 0.01). Note that the angle estimation is not zero for gestures performed when
the task was to play the original sound, leading to a relative spectral centroid slightly
greater than 1.

7.4. Dynamic Adaptation of One Characteristic: Size

Task 5 involved a dynamic, time-varying modification of the volume of the sound. We
asked the participants to play the sound louder at the beginning, gradually becoming
quieter at the end. Figure 16 reports the results by plotting the mean curve of estimated
size over the course of gesture execution (in percentage). The mean curve is reported
as the solid black line, while dashed lines represent the dynamic standard deviations.

Considering the values at 0%, 50%, and 100%, the statistical test shows that the size
significantly increases between the beginning and the middle of the gesture (p < 0.01)
and significantly decreases between the middle and the end of the gesture (p < 0.01).
This demonstrates that the participants successfully changed the size dynamically
according to the task, relative to the initial amplitude (1.0).

7.5. Adaptation of Two Characteristics

The two last tasks involved the joint simultaneous modification of two sound charac-
teristics: Task 6 was to play slower and quieter while Task 7 was to play louder and
high-pass filtered.

7.5.1. Task 6: Slower and Quieter. Figure 17 reports the results in a similar way to
Figure 15 but with two graphs, one for each sound feature being modified. The right
side of the figure shows the relative duration (above) and the relative volume (below)
of the sound output. On the left side, the top plot illustrates the estimated speed and
below the relative size of the gesture performed by the user in the task.

Figure 17 shows that the actual duration of sound output significantly increases
(right, top) while the volume significantly decreases (right, bottom) (p < 0.01). This
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Fig. 17. Task 6: Slower and quieter. Significance code: **p < 0.01, *p < 0.05.

is linked to the gesture characteristics—faster gesture for shorter sound and larger
gesture for louder sound. Indeed, the postprocessing analysis values (left, yellow) sig-
nificantly decrease when performing Task 6 while the size also decreases (p < 0.01).
The online estimation by GVF gives a similar result (with p < 0.01).

7.5.2. Task7: Louder and High-Pass Filtered. Figure 18 reports on the results from Task 7.
On the right, top plot, we have the relative rolume and below the relative spectral
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Fig. 18. Task 7: Louder and high-pass filtered. Significance code: **p < 0.01, *p < 0.05.

centroid of the sound output. The left top plot illustrates the estimated size and below
the norm of the angles of rotation.

For the audio (right), the analysis shows that the volume as well as the spectral
centroid significantly increase (p < 0.01). The sounds produced by the users’ gestures
are globally louder and high-pass filtered, showing that the users accomplished the
given task. The relative gesture size (left) given by postprocessing calculation signif-
icantly increases (p < 0.01) when trying to play the sound louder and filtered. The
online estimation by GVF parallels the postprocessing estimated values and the size
significantly increases (p < 0.01); the norm of the angles also increases (p < 0.01).

7.6. Observations from the User Study

Participants in this study were, on the whole, successful in playing sounds using vari-
ation in their gesture to articulate changes in speed, volume, or filtering, and combi-
nations of these manipulations. The task was understood and successfully executed by
the participants. Audio analysis of the sound output showed that the users succeeded
in modifying the sounds’ characteristics according to the tasks considered. In addition,
the gesture variations used to achieve the tasks were coherent with the sound produced
and the gesture-to-sound mapping implemented. Consequently, the online estimation
by GVF embodies the variations asked on the sound either in speed, size, or orienta-
tion and converge with the reference postprocessing calculation of gesture differences.
This has been shown to also be accurate when users were asked to vary two sound
characteristics simultaneously.

A very important feature is that the adaptation is dynamic, along the gesture pro-
gression, starting at the selection. As it was configured, the algorithm imposes certain
initial conditions that are as follows: phase set to 0, scales and speed to 1, and angles
of orientation to 0. Then the algorithm dynamically adapts to the variations in gesture
performance. We saw that the participants were successful in dynamically controlling
the size: bigger at the beginning and smaller at the end.
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8. DISCUSSION

We discuss in this section the main features of the algorithm based on the results
obtained from the algorithm evaluation and user study. We look at capability of the
method to carry out early recognition and adaptation, and outline limitations of the
algorithm and its use.

8.1. Early Recognition and Adaptation

Early recognition is a process that performs real-time classification. Once testing data
is received, the process continuously assigns probabilities to each class of the base
vocabulary and returns the class with highest probability. We showed that the GVF
method needs fewer frames than the HMM-based GF method to perform accurate
classification on a database of 2D pen gestures.

This ability to perform recognition midgesture is interesting in the interactive con-
text illustrated in Figure 1. Early recognition allows for the selection of a media asset
(such as sound) at the beginning of a gesture and provides scope for continuous interac-
tion throughout the rest of the gesture. This creates an important gestural interaction
dynamic in which continuous control is coincident with continuous input. On the other
hand, recognition techniques such as the $1 recognizer [Wobbrock et al. 2007] perform
selection after completion of the gesture, not allowing for continuous interaction. The
GVF method has been shown to perform with a recognition accuracy as good as those
methods while allowing low latency selection in a continuous interaction context (see
Section 7).

Continuous interaction leverages the algorithm’s adaptation feature. GVF has been
shown to be able to dynamically adapt to gesture variation. Results obtained in
Section 7.4 of the user study illustrate the dynamic process of adaptation to gesture
size. It shows that the estimated value starts at 1 (the initial condition) and then
converges towards the correct size values as the users modify the gesture size dynam-
ically: bigger gesture at the middle and smaller at the end (see Figure 16). Strategies
based on preprocessing used in offline methods such as the ones presented by Wobbrock
et al. [2007] (based on Euclidean distance or DTW) would not be able to handle these
dynamically changing variations.

Dynamic adaptation is an advantageous feature for the estimation of variations that
are hard to maintain constant throughout the gesture performance, such as rotation
angles. Given that tilting a gesture in three dimensions is a difficult task, users tend
to rotate gestures at angles that are not constant throughout the performance. This
leads to nonaffine transformations of the pattern, which require taking time-varying
parameters into account. GVF is designed to handle such transformations. We observed
that offline methods returned nonconsistent estimations of the rotation angles, whereas
GVF was able to adapt and report a consistent value.

Note that probabilistic machine learning methods such as HMMs could adapt to
dynamic variations provided prior knowledge of the type and range of variations, but
would require actual examples of these variations. On the contrary, our method only
requires one template reference per gesture class and is able to adapt to a wide range
of variations of each gesture without explicit examples. This represents an advantage
in applications for which an exhaustive database containing all gesture variations is
not readily available, or potential gesture variations cannot be known beforehand.

8.2. Limitations

Dynamic adaptation is not instantaneous and implies a latency that must be taken
into account in the application design. In the user study, we showed that the method
significantly converges towards increasing or decreasing speeds, but in the Faster task,
the algorithm does not attain the actual change in speed: speed is underestimated.
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This is a constraint of the algorithm due to the convergence time required by the
particle filtering implementation. The time needed by the particle filter to converge
to the correct estimation is longer than the actual duration of the gesture in the
case of a quickly executed variant. The speed of convergence is determined by the
noise parameters of the Gaussian transition distribution, which govern the speed and
precision of adaptation. A trade-off thus has to be found in order to balance convergence
time and estimation precision. This also reveals that the algorithm parameters need
to be fine tuned to the interaction context. These parameters have a direct impact
on the performance of the algorithm but also allow it to be more flexible to different
interaction scenarios: wide or narrow variations, fast or slow convergence, precise or
loose. Future work could investigate the impact of these parameters on the usability
of the interaction potential provided by GVF.

Note that a possible improvement of the speed of convergence would then be in
adding constraints in the transition model, which would require prior knowledge on
variations’ possible dynamics.

8.3. The User Factor

Usability of the proposed method depends on the algorithm itself but also the users abil-
ity in controlling variations in their gestures. To some extent, gesture characteristics
are coupled due to constraints from the human motor system.

The ability of users to reliably control combinations of gesture variations has been
previously illustrated by Caramiaux et al. [2013]. While performing a gesture at nor-
mal or fast speeds, the “2/3 Power Law” of motion applies. This law states that there
is a strong correlation between instantaneous speed and curvature [Viviani and Flash
1995]. This means that the drawing speed cannot be constant over the pattern (even
if the user perceives it as constant), with each drawing pattern having a specific
time/speed profile. Therefore, in order to compare gesture speed across a vocabulary
of different stroke gestures, we need to consider average speed as calculated over
the whole pattern. The law called isochrony further establishes that average execu-
tion speed tends, for a given person, to be constant independent of size. These two laws
clearly establish that speed is not a parameter we are accustomed to controlling or vary-
ing in everyday drawing tasks. These facts only hold for “ballistic gestures,” performed
sufficiently quickly without feedback. When performed sufficiently slowly, gestures
(nonballistic in nature) are controlled through a sensorimotor loop using feedback such
as vision. In such cases, the human motion law we mentioned does not hold and an inde-
pendent control on the variation of gesture characteristics (e.g., speed, size) is possible.

Based on these results, in the user study presented in Section 7, we placed the
participants in a closed sensorimotor loop: a gesture performed continuously affects a
sound that, in turn, feeds back to influence the gesture being performed. The purpose
was to reduce the impact of coupling between gesture characteristics resulting from
motor control. An important future study is to investigate the precise impact of these
laws of motion on 3D gestures in interactive contexts.

9. CONCLUSION

In this article, we described a method, called GVF, for gesture recognition that can
adapt and estimate in real-time variations occurring during gesture execution. We
demonstrated the ability of our method to track changes in phase, scaling, and rotation.
Extension of the method to adapt to other types of variation would be straightforward
using the same formalism, and can be defined in a flexible manner. Feature initial
values can be chosen arbitrarily in one or several distinct intervals.

GVF belongs by design to the family of template-based methods. Therefore, we com-
pared it with similar approaches such as DTW or more recent methods such as the $1
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recognizer [Wobbrock et al. 2007] or GF [Bevilacqua et al. 2010]. It globally obtained
better results in accuracy, in adaptation only and recognition with adaptation. We did
not perform comparisons with other methods that require training on a large number
of examples because such approaches do not fit our application constraint of making
the training phase as easy as possible for the end user.

The first important feature of the algorithm is that GVF adapts dynamically to
large differences between the gesture performance and the templates without need for
explicit examples of the variations themselves. This dynamic adaptation is particularly
important since it is aimed to be used where the gesture classes are defined using
single templates. In practice, this allows the user to author small gesture datasets
while ensuring good recognition accuracy. In our case, adaptation is used not only to
improve the recognition, as generally found in the state of the art, but also allows us
to characterize gesture variation. Such variation estimations are useful in interaction
design contexts requiring continuous interaction. This feature has been illustrated in
an application involving continuous manipulation of sound playback.

Another important feature of the algorithm is causal inference. This represents a
clear advantage for interactive applications, since partial results are available during
the gestures (and not only after gesture completion). This allows the use of the running
estimation of the scaling as a control parameter during the gesture, or to anticipate
which gesture is currently performed by early recognition.

In summary, the GVF method we propose represents an improvement over the pre-
vious GF algorithm. Its contribution lies in the use of a general formalism based on a
particle-filtering inference, allowing for the online adaptation of gesture features. We
proved the validity of such an approach on 2D motion data as well as on 3D gestures.
In particular, we demonstrated recognition accuracy, early recognition, and adaptation
in an end user application.

This research is motivated by the design of expressive interaction models that allow
the use of a mixed strategy between discrete commands and continuous control. It is
influenced by application contexts for the expressive control of digital media (sound and
visuals), with a particular emphasis on low latency, early recognition capabilities. The
method proposed can be seen as part of broader research on adaptive gesture feature
estimation used to describe how a gesture is performed for use in expressive interaction.

A. APPENDIX
A.1. Inference and Algorithm for the Alignment and Adaptation

Here we denote by IV; the number of particles used to approximate the distribution.
We denote x the i’ state sample drawn and w), its respective weight at time &. The

weights are normalized such as Zi:l wi, = 1. The set of support points and their
associated weights {x}, wz}fv:sl is a random measure used to characterize the posterior

pdf p(Xz|X0.x—1, Z1.x). The continuous “true” state distribution can be approximated with
a series of weighted Dirac’s Delta functions:

P(Rk[X0k-1. Z1) ~ Y wid(Xp — X3).

The term x( represents the prior distribution (i.e., the initial state), and the posterior
distribution is updated at each time step. Finally, the expected value of the resulting
random measure is computed as X;.

An optional resampling step is used to address the degeneracy problem, common
to particle-filtering approaches, as discussed in detail by Arulampalam et al. [2002]
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and Douc and Cappé [2005]. Resampling is introduced because after a few iterations
of the inference algorithm, only a few particles have nonnegligible weights (it can be
shown that the variance of the importance weights can only increase over time). The
resampling step corresponds to draw the particles according to the current distribution
{w}e}fv Intuitively, resampling replaces a random measure of the true distribution with
an equivalent one (in the limit of N; — o0).

Black and Jepson [1998b] choose to randomly select 5% to 10% of particles to be
replaced by randomly taken initial values. This process is performed during transition
and may introduce discontinuities. In our approach, the degeneracy problem is handled
by defining a criterion based on effective sample size N,fr, as specified by Arulampalam

et al. [2002]: N,sr =1/ vazsl(w;;)z where N,fr is an estimate of the effective sample size,
that is, an approximation of the number of particles that are contributing significant
information to the estimation of the posterior pdf. The N, value is used as a criterion
to operate the resampling step, as shown in the Algorithm 2.

ALGORITHM 1: GVF: Real-Time Recognition and Adaptation to Gesture Variations

# T: number of templates

fori=1...T do
| AppTEMPLATE (TemplateGesture;)
end

# L: length of incoming gesture TestingGesture
SPREADPARTICLES()

fork=1...Ldo

PARTICLEFILTER ( TestingGesturel[k] )

P = ProBaBiLITIES() # P contains gesture probabilities

S = StaTUs() # S contains variation estimations (phase, speed, size, angle, etc.)
end

ALGORITHM 2: ParTicLEFILTER(2;): RealTime Temporal Alignment (step at time % with obser-
vation z;).

fori=1...N;do
x), ~ N(x}|Axp1, )
P}, ==x5,(1)

P(23x)) = St(z| (), g(p})), T, v)
W), < wj,_, p(zg|x},)

Ne -
Nerp < Z(wﬁe)z
i=1
if N.sr < resampling threshold then
| resample x} ...x}" according to ddf w} ... wp*wh < N;1 Vi=1...N;
end
NS . .
return X, = Z WX,
i=1
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ALGORITHM 3: SpreaDPARTICLES(): Initial Conditions by Spreading Particles over the Varying
Gesture Characteristics
# D is the state space dimension
fori=1...N; do
for/=1...Ddo
x) (1) = UnIRaNDOM(range;)  # Particle sets to a random value uniformly drawn from a
given range
end
w! = 1/N, # Uniform distribution over the particle weights
end

A.2. Rotation Matrix Convention

Let us consider the Cartesian frame (x, y, z), the three Euler angles ¢, 0, ¢ rotating
vectors about, respectively, x, y and z induce the three following rotation matrices:

1 0 0
R, = (0 cos(¢) —Sin(¢)>
0 sin(¢) cos(¢)

cos(@) O sin(f)

Ry = ( 0 1 0 )
—sin(@) 0 cos(9)
cos(y) —sin(y) 0

R, = (Sin(l//) cos(yr) O)
0 0 1

The rotation matrix in three dimensions considered in the article the clockwise rotation
defined as: R = RyRy Ry,

A.2.1. Model Configuration for 2D Gesture Data. The GVF method allows for taking into
account these invariants by defining them as state variables, s; and r;, respectively. The
gesture features estimated are the following: phase pz, velocity vy, scaling coefficient
sp, rotation angle ry, and the gesture index my, € [1...16]:

X), = (Dk» Uk, S T )T € [0, 1] x R® x N.

The invariance by rotation and scaling leads to the following nonlinear function of state
variables:

flx () = diagton ( So5%) " o0 ) g(po).

The state transition matrix A;, for the template gesture index [ € [1, M] is given by:

11/T,00 ...

01 00 ...
_lo o
A=1g o I

where T is the length of the [-th gesture template.

A.3. Model Configuration for 3D Gesture Data

The model is configured in order to be able to track variations in speed, scale, and
orientation for 3D gesture inputs. We denote these variations as follows: phase p,
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velocity vz, scaling coefficients sg, rotation angles rz, and the gesture indexmy, € [1...3].
Note that we have to consider scaling along the three dimensions and rotation in a 3D
space: s; = (s, s, 1), T = (B, Ok, Vp).

X; = (D&, Vi, Sk Sb+ S5 Dk Ons Vs mk)T €[0,1] xR” x N

The invariance by rotation and scaling leads to the following nonlinear function of state
variables:

s£ 00

f&r.gpe)=| 0 s, 0 |R(¢r. 6k, vi)E(pr),
0 0 s

where R(¢y, 0, Y1) is the rotation matrix in three dimensions given by the Euler angles.
As before, we refer the reader to Appendix A.2 for the rotation conventions. The state
transition matrix A; depends on the gesture template / and is written:

11/T,0 0
01 00
Aa—]0 0

0 O I

where I is the identity matrix of size 7 x 7 and T; is the length of the /-th template
gesture.

A.4. Complementary Study: Stimuli

XQ ?L'ﬂﬁ
V@XVEQ

Fig. 19. Gesture vocabulary used in the first experiment.

Table IV. Set of 11 Variation Combinations Used in Step 2 of Study 1

Variations
Id. Description
V1 Slower
V2 Faster

V3 | Change size

V4 Change orientation

V5 | Slower and change size

V6 | Faster and change size

V7 Slower and change orientation

V8 | Faster and change orientation

V9 | Change size and orientation

V10 | Slower and change size and orientation
V11 | Faster and change size and orientation
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